MATH 141, FALL 2016, HW7

DUE IN SECTION, OCTOBER 18

Problem 1. Two quickies:

- a. Let $\{a_n\}_0^\infty$ and $\{b_n\}_{n=0}^\infty$ be sequences with limits $a_n \to a$ and $b_n \to b$ as $n \to \infty$. If $a_n \leq b_n$ for all n then $a \leq b$.
- b. (Integral triangle inequality) Let $f : [a, b] \to \mathbb{R}$ be integrable. Then |f(x)| is integrable, and

$$\left|\int_{a}^{b} f(x)dx\right| \leq \int_{a}^{b} |f(x)|dx.$$

Problem 2. Construct a differentiable function $f : \mathbb{R} \to \mathbb{R}$ such that f(x) = 0 for $x \leq 0$, f(x) = 1 for $x \geq 1$ and 0 < f(x) < 1 for 0 < x < 1.

Problem 3. Let

$$f(x) = \begin{cases} x^2 \sin \frac{1}{x}, & x \neq 0\\ 0 & x = 0 \end{cases}$$

be the function from Lecture which is differentiable, but not continuously differentiable. Let g(x) = x + 2f(x). Show that g'(0) > 0 but that g is not increasing in any open interval about 0.

Problem 4. Prove *Bernoulli's inequality*: If x > -1 then for all positive integers n,

 $(1+x)^n \ge 1 + nx.$

(Hint: prove that the difference has a global extremum at 0.)

Problem 5. Given *n* real numbers $a_1, ..., a_n$, prove that the sum $\sum_{k=1}^n (x - a_k)^2$ is smallest when *x* is the arithmetic mean of $a_1, ..., a_n$.

Problem 6. What is the radius of the smallest circular disc required to cover every isoceles triangle of perimeter L?

1

Bonus Problem. Let $f : [0,1] \to \mathbb{R}$ be a differentiable function. Assume there is no point x in [0,1] such that f(x) = f'(x) = 0. Prove that f has finitely many zeros in [0,1]. (Hint: use the method of bisection.)