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Upper bounds and sups

Review:

An upper bound of a non-empty set is a number at least as large as
every member of the set: B is an upper bound of set S if

∀s ∈ S ,B ≥ s.

For instance, the numbers 5, 5.5, 6, 10, and 1020 are all upper bounds
of the set {1, 2, 3, 4, 5}.
If an upper bound for a set exists, the set is said to be bounded above.
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Upper bounds and sups

Review:

Given a non-empty set of real numbers which is bounded above, the
supremum of the set is the least upper bound of the set.

The supremum need not be a member of the set. For instance, the
set S = {x ∈ R : x < 5} has supremum 5.

An important property of the real numbers is that any non-empty set
of real numbers which is bounded above has a supremum.
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Upper bounds and sups

Review:

Whereas a set which is bounded above has infinitely many upper
bounds, it has only one supremum.

To prove that B is the supremum of a set S , it is necessary to prove
that B is an upper bound for S , and that if C is another upper bound
for S , then B ≤ C .

To check that 5 is the supremum of S = {x ∈ R : x < 5} note that
for all x ∈ S , x < 5 so 5 is an upper bound. If C < 5 then
C < (C + 5)/2 < 5 so C is not an upper bound for S , thus 5 is the
l.u.b.
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Continuous functions

Review:

A function f defined on a set S is continuous at p ∈ S if, for each
ε > 0 there is a δ > 0 such that x ∈ S and |x − p| < δ implies
|f (x)− f (p)| < ε.

A function f is said to be continuous on S if it is continuous at each
point p ∈ S .
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Continuous functions

Review:

We check from the definition that f (x) = x2 is continuous on [0, 1].

Let p ∈ [0, 1]. Given ε > 0, let δ = ε
2 > 0. For x ∈ [0, 1] such that

|x − p| < δ,
|x2 − p2| = |x + p||x − p| < 2δ = ε

which verifies the condition of continuity at p.
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Uniformly continuous functions

Review:

A function f is uniformly continuous on S if, for any ε > 0 there is
δ > 0 such that if x , y ∈ S and |x − y | < δ, then |f (x)− f (y)| < ε.

We check from the definition that f (x) = x2 is uniformly continuous
on [0, 1]. Given ε > 0, choose δ = ε

2 . Then for x , y ∈ [0, 1] such that
|x − y | < δ,

|x2 − y2| = |x + y ||x − y | < 2δ = ε.

We proved in Lecture 7 that any function f which is continuous on a
closed interval [a, b] is uniformly continuous there.
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The vector space Rn

Rn consists of n-tuples of real numbers x = (x1, x2, ..., xn) where
x1, ..., xn ∈ R.

Pairs of elements of Rn are added and subtracted component-wise,
that is, x + y = (x1 + y1, x2 + y2, ..., xn + yn).

If a ∈ R, a · x = (ax1, ax2, ..., axn). This is called scalar multiplication.

These definitions make Rn into a real vector space.

Bob Hough Math 141: Lecture 8 October 3, 2016 8 / 37



The Euclidean norm on Rn

The Euclidean norm of a vector x ∈ Rn is

‖x‖2 =
√

x2
1 + x2

2 + ...+ x2
n .

This satisfies ‖x‖2 = 0 if and only if x = 0 = (0, 0, ..., 0) and, for
a ∈ R, ‖a · x‖2 = |a|‖x‖2.

We checked in Lecture 4 that ‖x + y‖2 ≤ ‖x‖2 + ‖y‖2.

When n = 1, ‖ · ‖2 reduces to the absolute value | · |.
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The Euclidean distance on Rn

The Euclidean distance between two vectors x and y in Rn is defined
to be

d(x , y) = ‖x − y‖2.

The distance d(x , y) satisfies
1 For all x , y ∈ Rn, d(x , y) = 0 if and only if x = y .
2 For all x , y ∈ Rn, d(x , y) = d(y , x).
3 The triangle inequality holds: For all x , y , z ∈ Rn,

d(x , z) ≤ d(x , y) + d(y , z).

A distance which satisfies the three properties listed is called a metric.
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Continuity in Euclidean space

Definition

Let m, n ≥ 1. Let S ⊂ Rm and let f : S → Rn. The function f is
continuous at a point p ∈ S if, for each ε > 0 there exists δ > 0 such that
if x ∈ S then

d(x , p) < δ ⇒ d(f (x), f (p)) < ε.

f is said to be continuous on S if it is continuous at each point p ∈ S .
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Continuity in Euclidean space

Given S ⊂ Rm, a function f : S → Rn has the form
f (x) = (f1(x), ..., fn(x)) where f1(x), ..., fn(x) are component
functions each mapping S → R.

f is continuous at p ∈ Rn if and only if all of the component
functions f1, ..., fn are continuous at p.

For example f : R2 \ {(x , y) : y 6= 0} → R2, defined by

f (x , y) =
(

xy , xy

)
is continuous.

For a proof of these facts, see Homework 6.
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Sequences and subsequences

A sequence taking values in a set S is a function f : N→ S .

Instead of writing f (0), f (1), f (2), ... we often write x0, x1, x2, ... or
a0, a1, a2, ... etc. Other common notation includes {xn}∞n=0.

A sequence {bn}∞n=0 is a subsequence of a sequence {an}∞n=0 if there
is a strictly increasing function f : N→ N such that bn = af (n).
Intuitively, {bn}∞n=0 may ‘skip over’ some terms of {an}∞n=0.
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Examples of sequences

Here are some examples of sequences:

The constant sequence an = 1 for all n: 1, 1, 1, 1, ...

The Fibonacci sequence is defined by a0 = a1 = 1, for n ≥ 2,
an = an−1 + an−2. Its first few terms are

1, 1, 2, 3, 5, 8, ....

The sequence an = 2−n, with first few terms

1,
1

2
,

1

4
,

1

8
, ....

an is the length n truncation of the binary representation of 1,

0, 0.1, 0.11, 0.111, 0.1111, ....
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Examples of sequences and subsequences

Let {an = 2n}∞n=0 be the sequence of powers of 2, with terms

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, ....

The sequences {bn = 4n}∞n=0 and {cn = 8n}∞n=0 are both
subsequences

bn : 1, 4, 16, 64, 256, 1024, ...

cn : 1, 8, 64, 512, 4096, ...

found by taking from an the even index terms, respectively those
terms with index divisible by 3.
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Examples of sequences and subsequences

A sequence could take its values in higher dimensional Euclidean space, for
instance, {an = (n, n2)}∞n=0 is a sequence in R2 with first few terms

an : (0, 0), (1, 1), (2, 4), (3, 9), (4, 16), (5, 25), (6, 36), ....

Bob Hough Math 141: Lecture 8 October 3, 2016 16 / 37



Subsequence of a subsequence

Theorem

Let {yn}∞n=0 be a subsequence of sequence {xn}∞n=0, and let {zn}∞n=0 be a
subsequence of {yn}∞n=0. Then {zn}∞n=0 is a subsequence of {xn}∞n=0.

Proof.

Let f : N→ N and g : N→ N be strictly increasing functions such that
yn = xf (n) and zn = yg(n). Then zn = xf (g(n)). The function f ◦ g is the
composition of strictly increasing functions, hence strictly increasing. Thus
{zn}∞n=0 is a subsequence of {xn}∞n=0.
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The limit of a sequence

Definition

A sequence {an}∞n=0 contained in Euclidean space Rn has a limit A if, for
each ε > 0 there exists N ≥ 0 such that

n > N ⇒ d(an,A) < ε.

A sequence which has a limit is said to be convergent.
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Examples of limits

The constant sequence an = 1 has limit 1, written limn→∞ an = 1.
Given ε > 0, N = 0 suffices to obtain the required accuracy.

The sequence of binary approximations to 1, given by an = 1− 2−n

has limit 1. Given ε > 0, any N > log2
1
ε will suffice.

The sequence 1, 0, 1, 0, 1, 0, 1, 0, ... which alternates between 1 and 0
does not have a limit. It has as subsequences the constant sequence 1
with limit 1, and the constant sequence 0 with limit 0.
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Images of limits

Theorem

Let {an}∞n=0 be a sequence in Euclidean space Rn, with limit
limn→∞ an = x. Then any subsequence of {an}∞n=0 has limit x.

See Homework 6.
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Images of limits

Theorem

Let {an}∞n=0 be a sequence in the Euclidean space Rm, m ≥ 1, with
limn→∞ an = x . Let f be a function defined on Rm, which is continuous at
x. Then

lim
n→∞

f (an) = f (x).

Proof.

Given ε > 0, by the continuity of f at x there exists δ > 0, such that if
d(y , x) < δ then d(f (y), f (x)) < ε. Now choose N such that n > N
implies d(an, x) < δ. It follows that for n > N, d(f (an), f (x)) < ε, which
proves

lim
n→∞

f (an) = f (x).
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Sequential compactness

Definition

A set S is said to be sequentially compact if any sequence contained in S
has a subsequence converging to a limit in S .
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Sequential compactness of a closed interval

Theorem

Let a < b be real numbers. The interval [a, b] is sequentially compact.

Proof.

The proof is by the method of bisection. Let {xn}∞n=0 be a sequence with
values in [a, b].

Let [a0, b0] = [a, b]. For i ≥ 0, choose [ai+1, bi+1] to be a half of
[ai , bi ] which contains infinitely many terms of the sequence {xn}.
Define a subsequence {yn = xf (n)}∞n=0 of {xn}∞n=0 by defining
f (0) = 0, and, for n ≥ 1, f (n) is the first index after f (n − 1) such
that xf (n) ∈ [an, bn].

Let α = sup{an : n ≥ 0}. We have α ∈ [a, b]. Given ε > 0, choose N
sufficiently large such that n ≥ N implies [an, bn] ⊂ [α− ε, α + ε].
Thus, for n > N, |yn − α| < ε, so limn→∞ yn = α.
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Sequential compactness of a closed rectangle

Theorem

Let a < b and c < d be real numbers. The closed rectangle
[a, b]× [c, d ] ⊂ R2 is sequentially compact.

Proof.

Let {xn = (xn,1, xn,2)}∞n=0 be a sequence in [a, b]× [c , d ].

Apply the previous theorem to find a subsequence
{y

n
= (yn,1, yn,2)}∞n=0 of {xn}∞n=0 such that yn,1 converges to limit x1.

Now find a subsequence {zn = (zn,1, zn,2)}∞n=0 of {y
n
}∞n=0 such that

zn,2 converges to limit x2. zn,1 still converges to x1.

To prove limn→∞ zn = (x1, x2), given ε > 0 choose N sufficiently large
such that n > N implies |zn,1 − x1| < ε

2 and |zn,2 − x2| < ε
2 . Then

d(zn, (x1, x2)) ≤ d(zn, (x1, zn,2)) + d((x1, zn,2), (x1, x2)) <
ε

2
+
ε

2
= ε.
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Sperner’s Lemma in 1d

Lemma (1d Sperner’s lemma)

Suppose an interval [a, b] is partitioned into finitely many subintervals by
points a = x0 < x1 < x2 < ... < xn = b. Color each point either red or
blue, and color a red and b blue. Then there is a segment (xi , xi+1) which
has endpoints of opposite color.

Proof.

Since a and b receive opposite colors, the number of color changes passing
from x0 to xn is odd, hence non-zero.
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Sperner’s Lemma in 2d

Let [ABC ] be a triangle.

A proper subdivision of [ABC ] is a partition of [ABC ] into
sub-triangles such that any two adjacent sub-triangles have a full
edge in common.

Given a proper subdivision of [ABC ], a proper coloring of the
subdivision is an assignment of colors 1, 2, 3 to the vertices of the
subdivision such that

1 Vertices A,B,C are colored 1, 2, 3
2 Any vertex lying on an edge of [ABC ] receives one of the colors of the

two endpoints of the edge, e.g. a vertex on [AB] is colored either 1 or
2.
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A proper subdivision and coloring
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Sperner’s Lemma in 2d

Lemma (2d Sperner’s Lemma)

Given a proper coloring of a proper subdivision of a triangle [ABC ], there
is a sub-triangle whose vertices receive all three colors 1, 2, 3.

Proof from Jacob Fox’s notes.

Let Q denote the number of sub-triangles with colors (1, 1, 2) or
(1, 2, 2) and R denote the number of sub-triangles with colors (1, 2, 3)

Let X denote the number of boundary edges colored (1, 2) and Y the
number of interior edges colored (1, 2).

Let N denote the number of pairs (T ,E ) where T is a sub-triangle,
and E is an edge colored (1, 2).

N = 2Q + R = X + 2Y . Since X is odd by the 1d Sperner’s lemma,
R is odd, so R > 0.
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Brouwer’s fixed point theorem in 1d

Theorem (1d Brouwer’s fixed point theorem)

Let a < b and let f : [a, b]→ [a, b] be continuous. The fixed point
equation f (x) = x has a solution.

Proof.

Consider g(x) = f (x)− x . A fixed point of f is a zero of g . One has
g(a) ≥ 0 and g(b) ≤ 0. Thus, either an endpoint is a zero, or by the
intermediate value theorem, there exists a < c < b such that
g(c) = 0.
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Brouwer’s fixed point theorem in 2d

Theorem (2d Brouwer’s fixed point theorem)

Let [ABC ] ⊂ R2 be a triangle (including the interior), and let
f : [ABC ]→ [ABC ] be continuous. The fixed point equation f (x) = x has
a solution x0 ∈ [ABC ].

Proof.

Given a triangle [A0B0C0], define its standard level 1 subdivision to be
the subdivision into 4 sub-triangles obtained by connecting the
midpoints of the sides.

Define the standard level n subdivision to be the subdivision obtained
by applying a standard level 1 subdivision to each sub-triangle in the
standard level n − 1 subdivision.

Each sub-triangle in the standard level n subdivision is similar to
[A0B0C0] and has been rescaled by 1

2n .
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A standard level 2 subdivison
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Brouwer’s fixed point theorem in 2d

Proof.

Treating A,B,C as vectors/points in R2,

[ABC ] = {x1A + x2B + x3C : 0 ≤ x1, x2, x3, x1 + x2 + x3 = 1}

This identifies [ABC ] with the standard simplex

∆2 = {(x1, x2, x3) ∈ R3 : x1, x2, x3 ≥ 0, x1 + x2 + x3 = 1}.

For instance, A corresponds to (1, 0, 0), B to (0, 1, 0) and C to
(0, 0, 1), and the segment [A,B] to {(x , 1− x , 0) : 0 ≤ x ≤ 1}.
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Brouwer’s fixed point theorem in 2d

Proof.

Treat the function f : [ABC ]→ [ABC ] as a function f̃ : ∆2 → ∆2 via
the identification.

Given the standard level n subdivision of [ABC ] define a coloring of
the vertices of the subdivision by assigning to point x = (x1, x2, x3) an
index i ∈ {1, 2, 3} such that xi > fi (x).

Note that A receives color 1, B color 2 and C color 3, since
x2 = x3 = 0 at A, etc. and any point of [AB] has x3 = 0, hence
receives color 1 or 2, etc. This verifies that the coloring is proper.

By Sperner’s Lemma, at each level n there is a sub-triangle [AnBnCn]
with vertices colored 1, 2, 3.
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Brouwer’s fixed point theorem in 2d

Proof.

By sequential compactness in rectangles of R2, there is a subsequence
{Ag(n)} of the sequence {An} which converges to a point x ∈ R2. It’s
possible to check that x ∈ [ABC ].

Given ε > 0 let 0 < δ < ε be sufficiently small that d(y , x) < δ
implies d(f (y), f (x)) < ε.

There exists N > 0 such that for n > N,
max(d(Ag(n), x), d(Bg(n), x), d(Cg(n), x)) < δ.

Since [Ag(n)Bg(n)Cg(n)] is colored 1,2,3,

f1(x) < f1(Ag(n)) + ε < Ag(n),1 + ε < x1 + δ + ε

f2(x) < f2(Bg(n)) + ε < Bg(n),2 + ε < x2 + δ + ε

f3(x) < f3(Cg(n)) + ε < Cg(n),3 + ε < x3 + δ + ε.
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Brouwer’s fixed point theorem in 2d

Proof.

Recall 0 < δ < ε, and we’ve checked,

f1(x) < x1 + δ + ε

f2(x) < x2 + δ + ε

f3(x) < x3 + δ + ε.

But f1(x) + f2(x) + f3(x) = 1 = x1 + x3 + x3. Thus

f1(x) > x1 − 2δ − 2ε, f2(x) > x2 − 2δ − 2ε, f3(x) > x3 − 2δ − 2ε.

Letting ε→ 0, f (x) = x .
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Brouwer’s fixed point theorem in other domains

Theorem

Let D ⊂ R2 and F : D → [ABC ] a continuous bijection with continuous
inverse. Then any continuous function f : D → D has a fixed point.

Proof.

The map F ◦ f ◦ F−1 : [ABC ]→ [ABC ] is continuous, and hence has a
fixed point x . It follows that f (F−1(x)) = F−1(x).

Ex: A continuous map from the ball B2 = {(x , y) ∈ R2 : x2 + y2 ≤ 1} to
itself has a fixed point, see Homework 6.
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Applications of Brouwer’s fixed point theorem

Brouwer’s fixed point theorem finds applications in various fields, from
partial differential equations, to economics.

Bob Hough Math 141: Lecture 8 October 3, 2016 37 / 37


