Math 141: Lecture 8 Sperner's lemma and the Brouwer Fixed Point Theorem

Bob Hough

October 3, 2016

Bob Hough

Math 141: Lecture 8

October 3, 2016 1 / 37

Upper bounds and sups

Review:

• An *upper bound* of a non-empty set is a number at least as large as every member of the set: *B* is an upper bound of set *S* if

 $\forall s \in S, B \geq s.$

- For instance, the numbers 5, 5.5, 6, 10, and 10^{20} are all upper bounds of the set $\{1, 2, 3, 4, 5\}$.
- If an upper bound for a set exists, the set is said to be bounded above.

Upper bounds and sups

- Given a non-empty set of real numbers which is bounded above, the *supremum* of the set is the least upper bound of the set.
- The supremum need not be a member of the set. For instance, the set S = {x ∈ ℝ : x < 5} has supremum 5.
- An important property of the real numbers is that any non-empty set of real numbers which is bounded above has a supremum.

Upper bounds and sups

- Whereas a set which is bounded above has infinitely many upper bounds, it has only one supremum.
- To prove that B is the supremum of a set S, it is necessary to prove that B is an upper bound for S, and that if C is another upper bound for S, then B ≤ C.
- To check that 5 is the supremum of S = {x ∈ ℝ : x < 5} note that for all x ∈ S, x < 5 so 5 is an upper bound. If C < 5 then C < (C + 5)/2 < 5 so C is not an upper bound for S, thus 5 is the l.u.b.

Continuous functions

- A function f defined on a set S is continuous at $p \in S$ if, for each $\epsilon > 0$ there is a $\delta > 0$ such that $x \in S$ and $|x p| < \delta$ implies $|f(x) f(p)| < \epsilon$.
- A function f is said to be continuous on S if it is continuous at each point p ∈ S.

Continuous functions

Review:

- We check from the definition that $f(x) = x^2$ is continuous on [0, 1].
- Let $p \in [0, 1]$. Given $\epsilon > 0$, let $\delta = \frac{\epsilon}{2} > 0$. For $x \in [0, 1]$ such that $|x p| < \delta$, $|x^2 - p^2| = |x + p||x - p| < 2\delta = \epsilon$

which verifies the condition of continuity at p.

Uniformly continuous functions

- A function f is uniformly continuous on S if, for any $\epsilon > 0$ there is $\delta > 0$ such that if $x, y \in S$ and $|x y| < \delta$, then $|f(x) f(y)| < \epsilon$.
- We check from the definition that f(x) = x² is uniformly continuous on [0, 1]. Given ε > 0, choose δ = ε/2. Then for x, y ∈ [0, 1] such that |x y| < δ,
 |x² y²| = |x + y||x y| < 2δ = ε.
- We proved in Lecture 7 that any function *f* which is continuous on a closed interval [*a*, *b*] is uniformly continuous there.

- \mathbb{R}^n consists of *n*-tuples of real numbers $\underline{x} = (x_1, x_2, ..., x_n)$ where $x_1, ..., x_n \in \mathbb{R}$.
- Pairs of elements of ℝⁿ are added and subtracted component-wise, that is, <u>x</u> + <u>y</u> = (x₁ + y₁, x₂ + y₂, ..., x_n + y_n).
- If $a \in \mathbb{R}$, $a \cdot \underline{x} = (ax_1, ax_2, ..., ax_n)$. This is called *scalar multiplication*.
- These definitions make \mathbb{R}^n into a *real vector space*.

The Euclidean norm on \mathbb{R}^n

• The *Euclidean norm* of a vector $\underline{x} \in \mathbb{R}^n$ is

$$\|\underline{x}\|_2 = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}.$$

- This satisfies $\|\underline{x}\|_2 = 0$ if and only if $\underline{x} = 0 = (0, 0, ..., 0)$ and, for $a \in \mathbb{R}$, $\|a \cdot \underline{x}\|_2 = |a| \|\underline{x}\|_2$.
- We checked in Lecture 4 that $\|\underline{x} + \underline{y}\|_2 \le \|\underline{x}\|_2 + \|\underline{y}\|_2$.
- When n = 1, $\|\cdot\|_2$ reduces to the absolute value $|\cdot|$.

The Euclidean distance on \mathbb{R}^n

• The *Euclidean distance* between two vectors <u>x</u> and <u>y</u> in \mathbb{R}^n is defined to be

$$d(\underline{x},\underline{y}) = \|\underline{x} - \underline{y}\|_2.$$

- The distance $d(\underline{x}, y)$ satisfies
 - **1** For all $\underline{x}, \underline{y} \in \mathbb{R}^n$, $d(\underline{x}, \underline{y}) = 0$ if and only if $\underline{x} = \underline{y}$.
 - 2 For all $\underline{x}, \underline{y} \in \mathbb{R}^n$, $d(\underline{x}, \underline{y}) = d(\underline{y}, \underline{x})$.
 - **③** The triangle inequality holds: For all $\underline{x}, \underline{y}, \underline{z} \in \mathbb{R}^n$,

$$d(\underline{x},\underline{z}) \leq d(\underline{x},\underline{y}) + d(\underline{y},\underline{z}).$$

• A distance which satisfies the three properties listed is called a *metric*.

Continuity in Euclidean space

Definition

Let $m, n \ge 1$. Let $S \subset \mathbb{R}^m$ and let $f : S \to \mathbb{R}^n$. The function f is continuous at a point $\underline{p} \in S$ if, for each $\epsilon > 0$ there exists $\delta > 0$ such that if $\underline{x} \in S$ then

$$d(\underline{x}, p) < \delta \qquad \Rightarrow \qquad d(f(\underline{x}), f(p)) < \epsilon.$$

f is said to be continuous on S if it is continuous at each point $p \in S$.

Continuity in Euclidean space

- Given S ⊂ ℝ^m, a function f : S → ℝⁿ has the form
 f(<u>x</u>) = (f₁(<u>x</u>), ..., f_n(<u>x</u>)) where f₁(<u>x</u>), ..., f_n(<u>x</u>) are component functions each mapping S → ℝ.
- f is continuous at $\underline{p} \in \mathbb{R}^n$ if and only if all of the component functions $f_1, ..., f_n$ are continuous at p.
- For example $f : \mathbb{R}^2 \setminus \{(x, y) : y \neq 0\} \to \mathbb{R}^2$, defined by $f(x, y) = (xy, \frac{x}{y})$ is continuous.

For a proof of these facts, see Homework 6.

Sequences and subsequences

- A sequence taking values in a set S is a function $f : \mathbb{N} \to S$.
- Instead of writing f(0), f(1), f(2), ... we often write $x_0, x_1, x_2, ...$ or $a_0, a_1, a_2, ...$ etc. Other common notation includes $\{x_n\}_{n=0}^{\infty}$.
- A sequence $\{b_n\}_{n=0}^{\infty}$ is a *subsequence* of a sequence $\{a_n\}_{n=0}^{\infty}$ if there is a strictly increasing function $f : \mathbb{N} \to \mathbb{N}$ such that $b_n = a_{f(n)}$. Intuitively, $\{b_n\}_{n=0}^{\infty}$ may 'skip over' some terms of $\{a_n\}_{n=0}^{\infty}$.

Examples of sequences

Here are some examples of sequences:

- The constant sequence $a_n = 1$ for all n: 1, 1, 1, 1, ...
- The Fibonacci sequence is defined by $a_0 = a_1 = 1$, for $n \ge 2$, $a_n = a_{n-1} + a_{n-2}$. Its first few terms are

 $1, 1, 2, 3, 5, 8, \ldots$

• The sequence $a_n = 2^{-n}$, with first few terms

$$1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \dots$$

• a_n is the length *n* truncation of the binary representation of 1,

 $0, 0.1, 0.11, 0.111, 0.1111, \dots$

Examples of sequences and subsequences

• Let $\{a_n = 2^n\}_{n=0}^{\infty}$ be the sequence of powers of 2, with terms

 $1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, \dots$

• The sequences $\{b_n = 4^n\}_{n=0}^{\infty}$ and $\{c_n = 8^n\}_{n=0}^{\infty}$ are both subsequences

 b_n : 1, 4, 16, 64, 256, 1024, ... c_n : 1, 8, 64, 512, 4096, ...

found by taking from a_n the even index terms, respectively those terms with index divisible by 3.

Examples of sequences and subsequences

A sequence could take its values in higher dimensional Euclidean space, for instance, $\{a_n = (n, n^2)\}_{n=0}^{\infty}$ is a sequence in \mathbb{R}^2 with first few terms

 a_n : (0,0), (1,1), (2,4), (3,9), (4,16), (5,25), (6,36),

Subsequence of a subsequence

Theorem

Let $\{y_n\}_{n=0}^{\infty}$ be a subsequence of sequence $\{x_n\}_{n=0}^{\infty}$, and let $\{z_n\}_{n=0}^{\infty}$ be a subsequence of $\{y_n\}_{n=0}^{\infty}$. Then $\{z_n\}_{n=0}^{\infty}$ is a subsequence of $\{x_n\}_{n=0}^{\infty}$.

Proof.

Let $f : \mathbb{N} \to \mathbb{N}$ and $g : \mathbb{N} \to \mathbb{N}$ be strictly increasing functions such that $y_n = x_{f(n)}$ and $z_n = y_{g(n)}$. Then $z_n = x_{f(g(n))}$. The function $f \circ g$ is the composition of strictly increasing functions, hence strictly increasing. Thus $\{z_n\}_{n=0}^{\infty}$ is a subsequence of $\{x_n\}_{n=0}^{\infty}$.

★掃▶ ★注▶ ★注▶ → 注

The limit of a sequence

Definition

A sequence $\{a_n\}_{n=0}^{\infty}$ contained in Euclidean space \mathbb{R}^n has a limit A if, for each $\epsilon > 0$ there exists $N \ge 0$ such that

$$n > N \qquad \Rightarrow \qquad d(a_n, A) < \epsilon.$$

A sequence which has a limit is said to be *convergent*.

-	
Lab	u or ha
בוסכו.	 וועוו

Examples of limits

- The constant sequence $a_n = 1$ has limit 1, written $\lim_{n\to\infty} a_n = 1$. Given $\epsilon > 0$, N = 0 suffices to obtain the required accuracy.
- The sequence of binary approximations to 1, given by a_n = 1 − 2⁻ⁿ has limit 1. Given ε > 0, any N > log₂ ¹/_ε will suffice.
- The sequence 1, 0, 1, 0, 1, 0, 1, 0, ... which alternates between 1 and 0 does not have a limit. It has as subsequences the constant sequence 1 with limit 1, and the constant sequence 0 with limit 0.

Images of limits

Theorem

Let $\{\underline{a}_n\}_{n=0}^{\infty}$ be a sequence in Euclidean space \mathbb{R}^n , with limit $\lim_{n\to\infty} \underline{a}_n = \underline{x}$. Then any subsequence of $\{\underline{a}_n\}_{n=0}^{\infty}$ has limit \underline{x} .

See Homework 6.

過 ト イヨ ト イヨト

Images of limits

Theorem

Let $\{\underline{a}_n\}_{n=0}^{\infty}$ be a sequence in the Euclidean space \mathbb{R}^m , $m \ge 1$, with $\lim_{n\to\infty} \underline{a}_n = \underline{x}$. Let f be a function defined on \mathbb{R}^m , which is continuous at \underline{x} . Then

$$\lim_{n\to\infty}f(\underline{a}_n)=f(\underline{x}).$$

Proof.

Given $\epsilon > 0$, by the continuity of f at \underline{x} there exists $\delta > 0$, such that if $d(\underline{y}, \underline{x}) < \delta$ then $d(f(\underline{y}), f(\underline{x})) < \epsilon$. Now choose N such that n > N implies $d(\underline{a}_n, \underline{x}) < \delta$. It follows that for n > N, $d(f(\underline{a}_n), f(\underline{x})) < \epsilon$, which proves

$$\lim_{n\to\infty}f(\underline{a}_n)=f(\underline{x}).$$

- 4 同 6 4 日 6 4 日 6

Sequential compactness

Definition

A set S is said to be *sequentially compact* if any sequence contained in S has a subsequence converging to a limit in S.

Sequential compactness of a closed interval

Theorem

Let a < b be real numbers. The interval [a, b] is sequentially compact.

Proof.

The proof is by the method of bisection. Let $\{x_n\}_{n=0}^{\infty}$ be a sequence with values in [a, b].

- Let $[a_0, b_0] = [a, b]$. For $i \ge 0$, choose $[a_{i+1}, b_{i+1}]$ to be a half of $[a_i, b_i]$ which contains infinitely many terms of the sequence $\{x_n\}$.
- Define a subsequence $\{y_n = x_{f(n)}\}_{n=0}^{\infty}$ of $\{x_n\}_{n=0}^{\infty}$ by defining f(0) = 0, and, for $n \ge 1$, f(n) is the first index after f(n-1) such that $x_{f(n)} \in [a_n, b_n]$.
- Let α = sup{a_n : n ≥ 0}. We have α ∈ [a, b]. Given ε > 0, choose N sufficiently large such that n ≥ N implies [a_n, b_n] ⊂ [α − ε, α + ε]. Thus, for n > N, |y_n − α| < ε, so lim_{n→∞} y_n = α.

Sequential compactness of a closed rectangle

Theorem

Let a < b and c < d be real numbers. The closed rectangle $[a, b] \times [c, d] \subset \mathbb{R}^2$ is sequentially compact.

Proof.

- Let $\{\underline{x}_n = (x_{n,1}, x_{n,2})\}_{n=0}^{\infty}$ be a sequence in $[a, b] \times [c, d]$.
- Apply the previous theorem to find a subsequence $\{\underline{y}_n = (y_{n,1}, y_{n,2})\}_{n=0}^{\infty}$ of $\{\underline{x}_n\}_{n=0}^{\infty}$ such that $y_{n,1}$ converges to limit x_1 .
- Now find a subsequence $\{\underline{z}_n = (z_{n,1}, z_{n,2})\}_{n=0}^{\infty}$ of $\{\underline{y}_n\}_{n=0}^{\infty}$ such that $z_{n,2}$ converges to limit x_2 . $z_{n,1}$ still converges to x_1 .
- To prove $\lim_{n\to\infty} \underline{z}_n = (x_1, x_2)$, given $\epsilon > 0$ choose N sufficiently large such that n > N implies $|z_{n,1} x_1| < \frac{\epsilon}{2}$ and $|z_{n,2} x_2| < \frac{\epsilon}{2}$. Then

$$d(\underline{z}_n,(x_1,x_2)) \leq d(\underline{z}_n,(x_1,z_{n,2})) + d((x_1,z_{n,2}),(x_1,x_2)) < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

Sperner's Lemma in 1d

Lemma (1d Sperner's lemma)

Suppose an interval [a, b] is partitioned into finitely many subintervals by points $a = x_0 < x_1 < x_2 < ... < x_n = b$. Color each point either red or blue, and color a red and b blue. Then there is a segment (x_i, x_{i+1}) which has endpoints of opposite color.

Proof.

Since *a* and *b* receive opposite colors, the number of color changes passing from x_0 to x_n is odd, hence non-zero.

Sperner's Lemma in 2d

Let [ABC] be a triangle.

- A *proper subdivision* of [*ABC*] is a partition of [*ABC*] into sub-triangles such that any two adjacent sub-triangles have a full edge in common.
- Given a proper subdivision of [*ABC*], a *proper coloring* of the subdivision is an assignment of colors 1, 2, 3 to the vertices of the subdivision such that
 - Vertices A, B, C are colored 1, 2, 3
 - Any vertex lying on an edge of [ABC] receives one of the colors of the two endpoints of the edge, e.g. a vertex on [AB] is colored either 1 or 2.

A proper subdivision and coloring

Roh	Hour	h
DOD	Tioug	

< A > < 3

Sperner's Lemma in 2d

Lemma (2d Sperner's Lemma)

Given a proper coloring of a proper subdivision of a triangle [ABC], there is a sub-triangle whose vertices receive all three colors 1, 2, 3.

Proof from Jacob Fox's notes.

- Let Q denote the number of sub-triangles with colors (1,1,2) or (1,2,2) and R denote the number of sub-triangles with colors (1,2,3)
- Let X denote the number of boundary edges colored (1, 2) and Y the number of interior edges colored (1, 2).
- Let N denote the number of pairs (T, E) where T is a sub-triangle, and E is an edge colored (1, 2).
- N = 2Q + R = X + 2Y. Since X is odd by the 1d Sperner's lemma, R is odd, so R > 0.

< 67 ▶

Theorem (1d Brouwer's fixed point theorem)

Let a < b and let $f : [a, b] \rightarrow [a, b]$ be continuous. The fixed point equation f(x) = x has a solution.

Proof.

Consider g(x) = f(x) - x. A fixed point of f is a zero of g. One has $g(a) \ge 0$ and $g(b) \le 0$. Thus, either an endpoint is a zero, or by the intermediate value theorem, there exists a < c < b such that g(c) = 0.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem (2d Brouwer's fixed point theorem)

Let $[ABC] \subset \mathbb{R}^2$ be a triangle (including the interior), and let $f : [ABC] \to [ABC]$ be continuous. The fixed point equation $f(\underline{x}) = \underline{x}$ has a solution $\underline{x}_0 \in [ABC]$.

Proof.

- Given a triangle $[A_0B_0C_0]$, define its standard level 1 subdivision to be the subdivision into 4 sub-triangles obtained by connecting the midpoints of the sides.
- Define the standard level n subdivision to be the subdivision obtained by applying a standard level 1 subdivision to each sub-triangle in the standard level n - 1 subdivision.
- Each sub-triangle in the standard level *n* subdivision is similar to $[A_0B_0C_0]$ and has been rescaled by $\frac{1}{2^n}$.

A standard level 2 subdivison

DI	I I a secolar
BOD	HOUGH
000	Tiougn

æ

<ロ> <問> <問> < 回> < 回>

Proof.

• Treating A, B, C as vectors/points in \mathbb{R}^2 ,

$$[ABC] = \{x_1A + x_2B + x_3C : 0 \le x_1, x_2, x_3, x_1 + x_2 + x_3 = 1\}$$

This identifies [ABC] with the standard simplex

$$\Delta_2 = \{(x_1, x_2, x_3) \in \mathbb{R}^3 : x_1, x_2, x_3 \ge 0, x_1 + x_2 + x_3 = 1\}.$$

For instance, A corresponds to (1,0,0), B to (0,1,0) and C to (0,0,1), and the segment [A, B] to {(x, 1 − x, 0) : 0 ≤ x ≤ 1}.

Proof.

- Treat the function $f : [ABC] \rightarrow [ABC]$ as a function $\tilde{f} : \Delta_2 \rightarrow \Delta_2$ via the identification.
- Given the standard level *n* subdivision of [*ABC*] define a coloring of the vertices of the subdivision by assigning to point $\underline{x} = (x_1, x_2, x_3)$ an index $i \in \{1, 2, 3\}$ such that $x_i > f_i(\underline{x})$.
- Note that A receives color 1, B color 2 and C color 3, since x₂ = x₃ = 0 at A, etc. and any point of [AB] has x₃ = 0, hence receives color 1 or 2, etc. This verifies that the coloring is proper.
- By Sperner's Lemma, at each level *n* there is a sub-triangle $[A_nB_nC_n]$ with vertices colored 1, 2, 3.

(日) (同) (三) (三)

Proof.

- By sequential compactness in rectangles of ℝ², there is a subsequence {A_{g(n)}} of the sequence {A_n} which converges to a point <u>x</u> ∈ ℝ². It's possible to check that <u>x</u> ∈ [ABC].
- Given $\epsilon > 0$ let $0 < \delta < \epsilon$ be sufficiently small that $d(\underline{y}, \underline{x}) < \delta$ implies $d(f(\underline{y}), f(\underline{x})) < \epsilon$.
- There exists N > 0 such that for n > N, $\max(d(A_{g(n)}, \underline{x}), d(B_{g(n)}, \underline{x}), d(C_{g(n)}, \underline{x})) < \delta.$

• Since $[A_{g(n)}B_{g(n)}C_{g(n)}]$ is colored 1,2,3,

$$\begin{split} f_1(\underline{x}) &< f_1(A_{g(n)}) + \epsilon < A_{g(n),1} + \epsilon < x_1 + \delta + \epsilon \\ f_2(\underline{x}) &< f_2(B_{g(n)}) + \epsilon < B_{g(n),2} + \epsilon < x_2 + \delta + \epsilon \\ f_3(\underline{x}) &< f_3(C_{g(n)}) + \epsilon < C_{g(n),3} + \epsilon < x_3 + \delta + \epsilon. \end{split}$$

Proof.

• Recall $0 < \delta < \epsilon$, and we've checked,

$$\begin{split} f_1(\underline{x}) &< x_1 + \delta + \epsilon \\ f_2(\underline{x}) &< x_2 + \delta + \epsilon \\ f_3(\underline{x}) &< x_3 + \delta + \epsilon. \end{split}$$

• But $f_1(\underline{x}) + f_2(\underline{x}) + f_3(\underline{x}) = 1 = x_1 + x_3 + x_3$. Thus

 $f_1(\underline{x}) > x_1 - 2\delta - 2\epsilon, \ f_2(\underline{x}) > x_2 - 2\delta - 2\epsilon, \ f_3(\underline{x}) > x_3 - 2\delta - 2\epsilon.$

Letting $\epsilon \to 0$, $f(\underline{x}) = \underline{x}$.

(日) (周) (三) (三)

Brouwer's fixed point theorem in other domains

Theorem

Let $D \subset \mathbb{R}^2$ and $F : D \to [ABC]$ a continuous bijection with continuous inverse. Then any continuous function $f : D \to D$ has a fixed point.

Proof.

The map $F \circ f \circ F^{-1} : [ABC] \to [ABC]$ is continuous, and hence has a fixed point x. It follows that $f(F^{-1}(x)) = F^{-1}(x)$.

Ex: A continuous map from the ball $B^2 = \{(x, y) \in \mathbb{R}^2 : x^2 + y^2 \le 1\}$ to itself has a fixed point, see Homework 6.

・ 同 ト ・ ヨ ト ・ ヨ ト

Applications of Brouwer's fixed point theorem

Brouwer's fixed point theorem finds applications in various fields, from partial differential equations, to economics.