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Upper bounds and sups

Review:

@ An upper bound of a non-empty set is a number at least as large as
every member of the set: B is an upper bound of set S if

Vse S5,B > s.

e For instance, the numbers 5,5.5,6, 10, and 10%° are all upper bounds
of the set {1,2,3,4,5}.

@ If an upper bound for a set exists, the set is said to be bounded above.
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Upper bounds and sups

Review:

@ Given a non-empty set of real numbers which is bounded above, the
supremum of the set is the least upper bound of the set.

@ The supremum need not be a member of the set. For instance, the
set S = {x € R: x <5} has supremum 5.

@ An important property of the real numbers is that any non-empty set
of real numbers which is bounded above has a supremum.
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Upper bounds and sups

Review:

@ Whereas a set which is bounded above has infinitely many upper
bounds, it has only one supremum.

@ To prove that B is the supremum of a set S, it is necessary to prove
that B is an upper bound for S, and that if C is another upper bound
for S, then B < C.

@ To check that 5 is the supremum of S = {x € R: x < 5} note that
forall x € S, x < 5s0 5 is an upper bound. If C <5 then
C < (C+5)/2<5s0 Cisnot an upper bound for S, thus 5 is the
l.u.b.
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Continuous functions

Review:

@ A function f defined on a set S is continuous at p € S if, for each
€ > 0 there is a 0 > 0 such that x € S and |x — p| < d implies

1f(x) = f(p)l <e
@ A function f is said to be continuous on S if it is continuous at each
point p € S.
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Continuous functions

Review:
@ We check from the definition that f(x

)=
o Let pc[0,1]. Given e >0, let 6 = 5 > 0. For x € [0, 1] such that
|x — p| <9,

2 is continuous on [0, 1].

X* = p?| =[x+ pllx —p| <20 =e

which verifies the condition of continuity at p.
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Uniformly continuous functions

Review:
@ A function f is uniformly continuous on S if, for any € > 0 there is
0 > 0 such that if x,y € S and |x — y| < 4, then |f(x) — f(y)| < e.

@ We check from the definition that f(x) = x? is uniformly continuous
on [0,1]. Given € >0, choose § = 5. Then for x,y € [0, 1] such that
Ix —y| <9,

X =y = Ix+yllx—yl <20 =

@ We proved in Lecture 7 that any function f which is continuous on a
closed interval [a, b] is uniformly continuous there.

Bob Hough Math 141: Lecture 8 October 3, 2016 7 /37



The vector space R”

@ R” consists of n-tuples of real numbers x = (x1, x2, ..., X,) where
X1,-., Xn € R,

@ Pairs of elements of R"” are added and subtracted component-wise,
thatis, x +y = (x1 + y1,X2 + y2, ..., Xa + Yn).

o IfaeR, a-x=(axy,axy,...,ax,). Thisis called scalar multiplication.

@ These definitions make R"” into a real vector space.
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The Euclidean norm on R”

@ The Euclidean norm of a vector x € R" is

Ixlle = /32 + 33 + ..+ %2

o This satisfies ||x||2 = 0 if and only if x =0 = (0,0, ...,0) and, for
aeR, [la-x]2 = |alllx]}2-

@ We checked in Lecture 4 that ||x + y[l2 < [|x]l2 + [ly|l2-

@ When n=1, || - ||2 reduces to the absolute value | - |.
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The Euclidean distance on R”

@ The Euclidean distance between two vectors x and y in R" is defined
to be

d(x,y) = lx =yl
o The distance d(x, y) satisfies
@ Forall x,y € R", d(x,y) =0 if and only if x = y.
@ Forall x,y € R", d(x,y) = d(y, x).
© The triangle inequality holds: For all x,y,z € R”,
d(x,z) < d(x,y)+d(y,z).

@ A distance which satisfies the three properties listed is called a metric.
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Continuity in Euclidean space

Definition

Let mn>1. Let SCR™and let f: S — R". The function f is
continuous at a point p € S if, for each € > 0 there exists § > 0 such that
if x € S then a

d(x,p) <9 = d(f(x),f(p)) <e.

f is said to be continuous on S if it is continuous at each point p € S.
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Continuity in Euclidean space

@ Given S C R™, a function f : S — R" has the form
f(x) = (A(x), ..., fa(x)) where fi(x), ..., fo(x) are component
functions each mapping S — R.

@ f is continuous at p € R" if and only if all of the component
functions f1, ..., f, are continuous at p.

e For example f : R?\ {(x,y) : y # 0} — R?, defined by
f(x,y) = (xy,7 ) is continuous.

For a proof of these facts, see Homework 6.
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Sequences and subsequences

@ A sequence taking values in a set S is a function f : N — S.

o Instead of writing f(0), f(1), f(2), ... we often write xg, x1, X2, ... Of
ap, a1, a2, ... etc. Other common notation includes {x,}52.

o A sequence {b,}7° is a subsequence of a sequence {a,}>2 if there
is a strictly increasing function f : N — N such that b, = ar(p,).
Intuitively, {bn}52, may ‘skip over’ some terms of {a,}7,.
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Examples of sequences

Here are some examples of sequences:
@ The constant sequence a, =1 forall n: 1,1, 1, 1, ...

@ The Fibonacci sequence is defined by ag = a; = 1, for n > 2,
an = ap—1 + an—»>. Its first few terms are

1,1,2,3,5,8, ...

@ The sequence a, = 27", with first few terms

1,

-l>||—-
ooll—'

1
12’
@ aj, is the length n truncation of the binary representation of 1,

0,0.1,0.11,0.111,0.1111, ....
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Examples of sequences and subsequences

o Let {a, =2"}9°, be the sequence of powers of 2, with terms
1,2,4,8,16,32,64,128,256,512,1024,2048, ....

@ The sequences {b, = 4"}, and {c, = 8"}, are both
subsequences

by : 1,4,16,64,256,1024, ...
cn:1,8,64,512, 4006, ...

found by taking from a, the even index terms, respectively those
terms with index divisible by 3.
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Examples of sequences and subsequences

A sequence could take its values in higher dimensional Euclidean space, for
instance, {a, = (n, n?)}22, is a sequence in R? with first few terms

2,1 (0,0), (1,1), (2, 4),(3,9), (4, 16), (5, 25), (6, 36), ...

Bob Hough Math 141: Lecture 8 October 3, 2016 16 / 37



Subsequence of a subsequence

Theorem

Let {yn}72 be a subsequence of sequence {x,}°2, and let {z,}°°, be a
subsequence of {yn}°2,. Then {z,}°2 is a subsequence of {x,}7° .

Proof.

Let f : N — N and g : N — N be strictly increasing functions such that
Yn = X¢(n) @and Zp = Yg(n). Then z, = X¢(g(n))- The function f o g is the
composition of strictly increasing functions, hence strictly increasing. Thus
{zn}52 is a subsequence of {x,}72,. O

v
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The limit of a sequence

Definition
A sequence {a,}°° , contained in Euclidean space R” has a limit A if, for
each € > 0 there exists N > 0 such that

n>N = d(an, A) < e.

A sequence which has a limit is said to be convergent.

Bob Hough Math 141: Lecture 8 October 3, 2016 18 / 37



Examples of limits

@ The constant sequence a, = 1 has limit 1, written lim,_,o a, = 1.
Given € > 0, N = 0 suffices to obtain the required accuracy.

@ The sequence of binary approximations to 1, given by a, =1—-27"
has limit 1. Given € > 0, any N > log,  will suffice.

@ The sequence 1,0,1,0,1,0,1,0, ... which alternates between 1 and 0
does not have a limit. It has as subsequences the constant sequence 1
with limit 1, and the constant sequence 0 with limit 0.
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Images of limits

Theorem

Let {a,}%2, be a sequence in Euclidean space R", with limit
limy— o0 @, = x. Then any subsequence of {a,}° has limit x.

See Homework 6.
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Images of limits

Theorem

Let {a,}7°, be a sequence in the Euclidean space R™, m > 1, with
lim,— a, = x. Let f be a function defined on R™, which is continuous at
x. Then

lim f(a,) = f(x).

n—o00

Proof.

Given € > 0, by the continuity of f at x there exists § > 0, such that if
d(y,x) < 0 then d(f(y), f(x)) < e. Now choose N such that n > N
implies d(a,,x) < ¢. It follows that for n > N, d(f(a,),f(x)) < €, which
proves

lim f(a,) = f(x).

n—o00

Ol

V.
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Sequential compactness

Definition
A set S is said to be sequentially compact if any sequence contained in S
has a subsequence converging to a limit in S.
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Sequential compactness of a closed interval

Theorem

Let a < b be real numbers. The interval [a, b] is sequentially compact.

Proof.

The proof is by the method of bisection. Let {x,}5°, be a sequence with
values in [a, b].
o Let [ag, bo] = [a, b]. For i > 0, choose [aj11, bj+1] to be a half of
[ai, bi] which contains infinitely many terms of the sequence {x,}.
o Define a subsequence {y, = x¢(n)}7Zg Of {Xn}pZo by defining
f(0) =0, and, for n > 1, f(n) is the first index after f(n — 1) such
that x¢(,) € [an, b].
o Let o« =sup{a,: n>0}. We have @ € [a, b]. Given ¢ > 0, choose N
sufficiently large such that n > N implies [a,, by] C [ac — €, a + €].
Thus, for n > N, |y, — a| <€, so lim,_o0 yn = a.

[]
y
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Sequential compactness of a closed rectangle
Theorem

Let a < b and c < d be real numbers. The closed rectangle
[a, b] x [c, d] C R? is sequentially compact.

Proof.
o Let {x, = (xn,1,X%n2)}°2, be a sequence in [a, b] X [c, d].
@ Apply the previous theorem to find a subsequence
{y, = (Y1, ¥n2) 1020 of {x,}720 such that y, 1 converges to limit x;.
o Now find a subsequence {z, = (zn1, 2n2)}72 of {y, }720 such that
Zp,2 converges to limit xo. z, 1 still converges to x;.

e To prove lim,_,« z,, = (x1, x2), given € > 0 choose N sufficiently large
such that n > N implies |z,1 — x1| < 5 and |z,2 — x2| < 5. Then

d(zy, (x1,%2)) < Az, (51, 202)) + (31, 202), (31, 32)) < 5 +

€
==
2

y
Bob Hough Math 141: Lecture 8 October 3, 2016 24 / 37




Sperner’'s Lemma in 1d

Lemma (1d Sperner's lemma)

Suppose an interval [a, b] is partitioned into finitely many subintervals by
points a = xg < x1 < xp < ... < x, = b. Color each point either red or
blue, and color a red and b blue. Then there is a segment (x;, x;+1) which
has endpoints of opposite color.

Proof.
Since a and b receive opposite colors, the number of color changes passing
from xg to x, is odd, hence non-zero. ]

V.
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Sperner’'s Lemma in 2d

Let [ABC] be a triangle.

e A proper subdivision of [ABC] is a partition of [ABC] into
sub-triangles such that any two adjacent sub-triangles have a full
edge in common.

e Given a proper subdivision of [ABC], a proper coloring of the

subdivision is an assignment of colors 1, 2, 3 to the vertices of the
subdivision such that

© Vertices A, B, C are colored 1, 2, 3

@ Any vertex lying on an edge of [ABC] receives one of the colors of the

two endpoints of the edge, e.g. a vertex on [AB] is colored either 1 or
2.
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A proper subdivision and coloring

Bob Hough
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Sperner’'s Lemma in 2d

Lemma (2d Sperner's Lemma)

Given a proper coloring of a proper subdivision of a triangle [ABC], there
is a sub-triangle whose vertices receive all three colors 1, 2, 3.

Proof from Jacob Fox's notes.

o Let Q denote the number of sub-triangles with colors (1,1,2) or
(1,2,2) and R denote the number of sub-triangles with colors (1,2, 3)

@ Let X denote the number of boundary edges colored (1,2) and Y the
number of interior edges colored (1,2).

o Let N denote the number of pairs (T, E) where T is a sub-triangle,
and E is an edge colored (1, 2).

o N=2Q+ R=X+2Y. Since X is odd by the 1d Sperner's lemma,
R is odd, so R > 0.

Ol

v
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Brouwer's fixed point theorem in 1d

Theorem (1d Brouwer's fixed point theorem)

Let a < b and let f : [a, b] — [a, b] be continuous. The fixed point
equation f(x) = x has a solution.

Proof.

Consider g(x) = f(x) — x. A fixed point of f is a zero of g. One has
g(a) > 0 and g(b) < 0. Thus, either an endpoint is a zero, or by the
intermediate value theorem, there exists a < ¢ < b such that

g(c)=0. O
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Brouwer's fixed point theorem in 2d

Theorem (2d Brouwer's fixed point theorem)

Let [ABC] C R? be a triangle (including the interior), and let
f : [ABC] — [ABC] be continuous. The fixed point equation f(x) = x has
a solution x, € [ABC].

v

Proof.

@ Given a triangle [AgBy (o], define its standard level 1 subdivision to be
the subdivision into 4 sub-triangles obtained by connecting the
midpoints of the sides.

@ Define the standard level n subdivision to be the subdivision obtained

by applying a standard level 1 subdivision to each sub-triangle in the
standard level n — 1 subdivision.

@ Each sub-triangle in the standard level n subdivision is similar to
[AoByCo] and has been rescaled by 2%

L]
.
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A standard level 2 subdivison
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Brouwer's fixed point theorem in 2d

Proof.
o Treating A, B, C as vectors/points in R?,

[ABC] = {x1iA+ xB + x3C : 0 < x1,x0, X3, x1 + X2 + x3 = 1}
This identifies [ABC] with the standard simplex
Do = {(x1,%,x3) € R : x1,x0,x3 > 0,x1 + % + x3 = 1}

@ For instance, A corresponds to (1,0,0), B to (0,1,0) and C to
(0,0,1), and the segment [A, B] to {(x,1 —x,0): 0 < x < 1}.
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Brouwer's fixed point theorem in 2d

Proof.

e Treat the function f : [ABC] — [ABC] as a function f : Ay — A, via
the identification.

o Given the standard level n subdivision of [ABC] define a coloring of
the vertices of the subdivision by assigning to point x = (x1, x2, x3) an
index i € {1,2,3} such that x; > fi(x).

@ Note that A receives color 1, B color 2 and C color 3, since
xp = x3 =0 at A, etc. and any point of [AB] has x3 = 0, hence
receives color 1 or 2, etc. This verifies that the coloring is proper.

@ By Sperner's Lemma, at each level n there is a sub-triangle [A,B,C]
with vertices colored 1,2, 3.

O]

v
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Brouwer's fixed point theorem in 2d

Proof.

@ By sequential compactness in rectangles of R?, there is a subsequence
{Ag(n)} of the sequence {A,} which converges to a point x € R2. It's
possible to check that x € [ABC].

@ Given ¢ > 0 let 0 < J < € be sufficiently small that d(y, x) <
implies d(f(y), f(x)) <.

@ There exists N > 0 such that for n > N,
max(d(A g(n)» X ),d( g(n)r X ) d( 2(n)> X)) < 9.

o Since [Ag(n)Bg(n) Cg(n)] is colored 1,2,3,

fi(x) < A(A g(n))+€<Ag(n)’1—|—€<X1+5—|-€
fg(X) < fz( g(n))+€< Bg(n)’2+€<X2+5+6
f},(g) < f;;(Cg(n)) +e< Cg(n),3 +e<x3+0+e.
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Brouwer's fixed point theorem in 2d

Proof.

@ Recall 0 < § < ¢, and we've checked,

filx) <x1+0+e
h(x)<xx+0+e¢
f(x) <x3+0d+e

e But fi(x) + fo(x) + f3(x) =1 = x1 + x3 + x3. Thus
fi(x) > x1 — 20 — 2¢, fr(x) > x2 — 25 — 2¢, f(x) > x3 — 20 — 2e.

Letting e — 0, f(x) = x.
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Brouwer's fixed point theorem in other domains

Theorem

Let D C R? and F : D — [ABC] a continuous bijection with continuous
inverse. Then any continuous function f : D — D has a fixed point.

Proof.
The map FofoF~!:[ABC] — [ABC] is continuous, and hence has a
fixed point x. It follows that f(F~%(x)) = F~1(x). O

v

Ex: A continuous map from the ball B2 = {(x,y) € R?: x> + y? < 1} to
itself has a fixed point, see Homework 6.
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Applications of Brouwer's fixed point theorem

Brouwer’s fixed point theorem finds applications in various fields, from
partial differential equations, to economics.
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