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Properties of the integral

Theorem (Linearity with respect to integrand)

If f and g are integrable on [a, b], then for every pair of constants c1, c2,
c1f + c2g is integrable on [a, b]. Furthermore,∫ b

a
[c1f (x) + c2g(x)]dx = c1

∫ b

a
f (x)dx + c2

∫ b

a
g(x)dx .

Proof.

Last class we checked the claim for f + g , so we’ll just check the claim for
cf . For each n = 1, 2, ... choose step functions sn < f < tn,∫ b

a
f (x)dx − 1

n
<

∫ b

a
sn(x)dx <

∫ b

a
tn(x)dx <

∫ b

a
f (x)dx +

1

n
.
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Properties of the integral

Proof.

Suppose c > 0. Then∫ b

a
ctn(x)dx − 2c

n
<

∫ b

a
csn(x)dx

≤
∫ b

a
cf (x)dx ≤

∫ b

a
ctn(x)dx .

It follows that 0 ≤ I (cf )− I (cf ) < 2c
n for every n, so the two are both

equal to
∫ b
a cf (x)dx .

The case c < 0 exchanges the role of lower and upper step functions.
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Properties of the integral

Theorem (Additivity with respect to the interval of integration)

If two of the following three integrals exist, the third also exists, and we
have ∫ b

a
f (x)dx +

∫ c

b
f (x)dx =

∫ c

a
f (x)dx .

Proof.

Suppose both integrals on the left exist. Choose step functions s, t on
[a, b] with s ≤ f ≤ t and step functions s ′, t ′ on [b, c] with s ′ ≤ f ≤ t ′ and∫ b

a
f (x)dx − 1

n
≤
∫ b

a
s(x)dx ≤

∫ b

a
t(x)dx ≤

∫ b

a
f (x)dx +

1

n

with similar inequalities for s ′, t ′ on [b, c].
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Properties of the integral

Proof.

Define s ′′ and t ′′ on [a, c] by setting s ′′(x) = s(x) on [a, b], s ′′(x) = s ′(x)
on (b, c], with the corresponding definition of t ′′. Then s ′′ ≤ f ≤ t ′′ and∫ b

a
f (x)dx +

∫ c

b
f (x)dx − 2

n
≤
∫ c

a
s ′′(x)dx ≤

∫ c

a
t ′′(x)dx

≤
∫ b

a
f (x)dx +

∫ c

b
f (x)dx +

2

n
.

This proves that the lower and upper integrals are equal to∫ b
a f (x)dx +

∫ c
b f (x)dx .
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Properties of the integral

Proof.

Now suppose that f is integrable on [a, b] and on [a, c]. Let s and t be
lower and upper step functions for f on [a, b], which approximate the
integral to precision 1

n and similarly s ′ and t ′ on [a, c]. Define s ′′, t ′′ on
[a, b] by s ′′ = s ′, t ′′ = t ′ on (b, c] and

s ′′(x) = max(s(x), s ′(x)), t ′′(x) = min(t(x), t ′(x)), x ∈ [a, b].
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Properties of the integral

Proof.

Then∫ c

b
t ′′(x)dx −

∫ c

b
s ′′(x)dx =

∫ c

a
t ′′(x)dx −

∫ c

a
s ′′(x)dx

−
(∫ b

a
t ′′(x)dx −

∫ b

a
s ′′(x)dx

)
≤ 1

n
.

By taking n arbitrarily large, it follows that the upper and lower integrals
of f on [b, c] agree.
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Properties of the integral

Proof.

Observe that∫ c

a
f (x)dx −

∫ b

a
f (x)dx − 1

n
≤
∫ c

a
s ′′(x)dx −

∫ b

a
s ′′(x)dx

≤
∫ c

a
f (x)dx −

∫ b

a
f (x)dx +

1

n

to complete the proof.
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Properties of the integral

Theorem (Invariance under translation)

If f is integrable on [a, b], then for every real c we have∫ b

a
f (x)dx =

∫ b+c

a+c
f (x − c)dx .

Proof sketch.

If s and t are lower and upper step function for f on [a, b], then s(x − c)
and t(x − c) are lower and upper step functions for f (x − c) on
[a + c , b + c] with the same integrals. It follows that the lower and upper
integrals match on the two intervals.
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Properties of the integral

Theorem (Expansion or contraction of the interval of integration)

If f is integrable on [a, b], then for every real k 6= 0 we have∫ b

a
f (x)dx =

1

k

∫ kb

ka
f
(x

k

)
dx .

Proof.

Let k > 0. If s and t are lower and upper step functions for f on [a, b],
then s

(
x
k

)
, t
(
x
k

)
are lower and upper step functions for f

(
x
k

)
on [ka, kb],

so the theorem follows from the theorem for step functions. If k < 0,
argue the same way, integrating on [kb, ka] instead.
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Properties of the integral

Theorem (Comparison theorem)

If both f and g are integrable on [a, b] and if g(x) ≤ f (x) for every x in
[a, b], then we have ∫ b

a
g(x)dx ≤

∫ b

a
f (x)dx .

Proof.

Let s be a lower step function for f and s ′ a lower step function for g .
Define s ′′ = max(s, s ′), which is still a lower step function for f . Then∫ b
a s ′(x)dx ≤

∫ b
a s ′′(x)dx , from which it follows that∫ b

a
g(x)dx = I (g) ≤ I (f ) =

∫ b

a
f (x)dx .
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The area between two integrable functions

Theorem

Assume f and g are integrable and satisfy f ≤ g on [a, b]. Then the
region S between their graphs is measurable and its area a(S) is given by
the integral

a(S) =

∫ b

a
[g(x)− f (x)]dx .
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The area between two integrable functions

Proof.

First suppose that both f , g ≥ 0. Set

F = {(x , y) : a ≤ x ≤ b, 0 ≤ y < f (x)},
G = {(x , y) : a ≤ x ≤ b, 0 ≤ y ≤ g(x)}.

Then S = G \ F . Thus a(S) = a(G )− a(F ). By the theorem proved last
lecture regarding the area under the integral of a positive function,

a(G )− a(F ) =

∫ b

a
[g(x)− f (x)]dx .
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The area between two integrable functions

Proof.

If f takes negative values, choose M > 0 such that f > −M. Apply the
previous calculation to f + M and g + M and note that this just translates
the region S by M and does not change its area. The same is true of the
difference of integrals.

Bob Hough Math 141: Lecture 6 September 19, 2016 14 / 33



Area under similarity

Theorem

Let f ≥ 0 on [a, b] be integrable with ordinate set S of area A. The area
of kS is k2A.

Proof.

Let g(x) = kf
(
x
k

)
on [ka, kb]. The ordinate set of g is the set kS . By the

properties of the integral,

a(kS) =

∫ kb

ka
g(x)dx = k

∫ kb

ka
f
(x

k

)
dx = k2A.
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Example integral

Theorem

Let a ≥ 0,
∫ a
0 x

1
2 dx = 2

3a
3
2 .

Proof.

Since the function x
1
2 is increasing, it is non-negative and integrable.

Write S for its ordinate set on [0, a], with area a(S) =
∫ a
0 x

1
2 dx . Let R be

the rectangle with corners at (0, 0) and (a, a
1
2 ). The set R \ S is the

ordinate set minus the graph of the function x = y2 on [0, a
1
2 ], with area

a
3
2

3 . Thus S has area 2
3a

3
2 .
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Trig identities

Recall that π is defined to be the area of a circle of unit radius, also, half
the circumference of such a circle.

Angles are measured in radians. The radian measure of an angle is
twice the area of the sector subtended.

The (x , y) coordinates of the subtended angle θ are (cos θ, sin θ).

For 0 < x < π
2 ,

0 < cos x <
sin x

x
< 1.
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Trig identities

Theorem
1 sin π

2 − x = cos x

2 cos−x = cos x, sin−x = − sin x

3 cos y − x = cos y cos x + sin y sin x.

Proof.

By Euler’s formula e ix = cos x + i sin x ,

e i(
π
2
−x) = e i

π
2 e i(−x) =

i

cos x + i sin x
= sin x + i cos x .

We have e−ix = cos(−x) + i sin−x = 1
e ix

= cos x − i sin x . By Euler again,

cos y − x = <e i(y−x) = <(cos y + i sin y)(cos x − i sin x)

= cos y cos x + sin y sin x .
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Trig identities

Theorem

1 cos a− cos b = −2 sin a−b
2 sin a+b

2 ; cos x decreases, sin x increases on
[0, π2 ].

2 sin x + y = sin x cos y + cos x sin y.

Proof.

Use sin x = e ix−e−ix

2i to write

−2 sin
a− b

2
sin

a + b

2
=

1

2

(
e

i(a−b)
2 − e−

i(a−b)
2

)(
e

i(a+b)
2 − e−

i(a+b)
2

)
=

e ia + e−ia

2
− e ib + e−ib

2
= cos a− cos b.

sin x + y = =e i(x+y) = = ((cos x + i sin x)(cos x + i sin y))

= cos x sin y + sin x cos y .
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Trig identities

Theorem

For each n = 1, 2, ..., and x ∈ R,

2 sin
x

2

(
1

2
+

n∑
k=1

cos kx

)
= sin

(
n +

1

2

)
x .

Proof.

Use cos x = e ix+e−ix

2 , sin x = e ix−e−ix

2i . The identity rearranges to

(
e i

x
2 − e−i

x
2

) n∑
k=−n

e ikx =
(

e i(n+
1
2
)x − e−i(n+

1
2
)x
)
.

This may be verified by induction on n.
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Trig integrals

Theorem

If 0 < a < π
2 and n is sufficiently large, we have

a

n

n∑
k=1

cos
ka

n
< sin a <

a

2n
+

a

n

n∑
k=1

cos
ka

n
.

Since cos is decreasing on [0, π2 ] it is integrable, with equal subdivision
lower integrals given by

a

n

n∑
k=1

cos
ka

n
.

Since the error from this lower integral is bounded by a constant times 1
n ,

it follows that
∫ a
0 cos θdθ = sin a.
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Trig integrals

One obtains∫ a

0
sin θdθ =

∫ a

0
cos
(π

2
− θ
)

dθ =

∫ π
2

π
2
−a

cos θdθ = 1− cos a. (1)
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Trig integrals

Proof of inequality with sum of cosines.

By the formula two slides previous,

a

n

n∑
k=1

cos
ka

n
=

sin(n + 1
2) an − sin a

2n
2n
a sin a

2n

.

Set θ = a
2n . By the angle addition formula,

sin(2n + 1)θ = sin 2nθ cos θ + cos 2nθ sin θ < sin 2nθ
sin θ

θ
+ sin θ.

This rearranges to the first claimed inequality

sin(n + 1
2) an − sin a

2n
2n
a sin a

2n

< sin a.
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Trig integrals

Proof.

To prove the second inequality, write

a

2n
+

a

n

n∑
k=1

cos
ka

n
=

sin(n + 1
2) an

2n
a sin a

2n

.

Thus the second inequality reduces to

2n

a
sin

a

2n
sin a < sin a < sin(n +

1

2
)

a

n
.

This holds for all n large enough so that
n+ 1

2
n a ≤ π

2 , since sin θ
θ < 1, and

sin θ is increasing on [0, π2 ].
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Polar coordinates

Let f ≥ 0 on an interval [a, b], where 0 ≤ b − a ≤ 2π.

The radial set of f over [a, b] is the set of points in polar coordinates
{(r , θ) : a ≤ θ ≤ b, 0 ≤ r ≤ f (θ)}.
If f is a constant s on interval [a, b], the area of the corresponding
sector is 1

2(b − a)s2.

Bob Hough Math 141: Lecture 6 September 19, 2016 25 / 33



Polar coordinates

Theorem

Let R denote the radial set of a nonnegative function f over an interval
[a, b], where 0 ≤ b − a ≤ 2π, and assume that R is measurable. If f 2 is
integrable on [a, b] the area of R is given by the integral

a(R) =
1

2

∫ b

a
f 2(θ)dθ.

Proof.

Let s and t be step functions with radial sets S ,T and satisfying
s ≤ f ≤ t. Then S ⊂ R ⊂ T . Hence∫ b

a
s2(θ)dθ ≤ 2a(R) ≤

∫ b

a
t2(θ)dθ.

Since s2 and t2 are arbitrary lower and upper step functions for f 2, the
claim follows.
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Average value of a function

Given n numbers a1, a2, ..., an, their arithmetic mean, or average, is

a =
1

n

n∑
k=1

ak .

Definition

If f is integrable on an interval [a, b], we define A(f ), the average value of
f on [a, b], by the formula

A(f ) =
1

b − a

∫ b

a
f (x)dx .
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Average value of a function

Let w1,w2, ...,wn be non-negative numbers, not all zero. The weighted
mean of a1, ..., an

a =

∑n
k=1 wkak∑n
k=1 wk

.

Let w be a non-negative integrable function
∫ b
a w(x) > 0. The weighted

mean of f (x) on [a, b]

A(f ) =

∫ b
a f (x)w(x)dx∫ b

a w(x)dx
.
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Metal rod example

A straight rod of length a and positive mass is positioned on the x-axis
interval [0, a] with integrable mass-density function ρ(x). This means that
the mass of the rod between b and c is

∫ c
b ρ(x)dx .

The center of mass is

x =

∫ a
0 xρ(x)dx∫ a

0 ρ(x)
.

The moment of inertia is
∫ a
0 x2ρ(x)dx .

The radius of gyration is

r2 =

∫ a
0 x2ρ(x)dx∫ a
0 ρ(x)dx

.
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Properties of indefinite integrals

Let f be a function on [a, b] such that the integral
∫ x
a f (t)dt exists for

each x ∈ [a, b]. The function

F (x) =

∫ x

a
f (t)dt, a ≤ x ≤ b

is an indefinite integral of f .
One has ∫ d

c
f (t)dt = F (x)|dc = F (d)− F (c).
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Convexity

Definition

A function f on [a, b] is convex, resp. concave if, for all x , y ∈ [a, b] and
all 0 ≤ α ≤ 1,

g(αy + (1− α)x) ≤ αg(y) + (1− α)g(x)

resp.
g(αy + (1− α)x) ≥ αg(y) + (1− α)g(x).
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Properties of indefinite integrals

Theorem

Let A(x) =
∫ x
a f (t)dt. Then A is convex on every interval on which f is

increasing, and concave on every interval on which f is decreasing.
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Properties of indefinite integrals

Proof.

Let x , y ∈ [a, b] with x < y . Let 0 < α < 1 and set z = αy + (1− α)x .
Write A(z) = (1− α)A(z) + αA(z). It suffices to show

(1− α)[A(z)− A(x)] ≤ α[A(y)− A(z)],

or, writing z − x = α(y − x), y − z = (1− α)(y − x),

A(z)− A(x)

z − x
≤ A(y)− A(z)

y − z
.

This follows from the mean property

LHS =
1

z − x

∫ z

x
f (t)dt ≤ f (z) ≤ 1

y − z

∫ z

y
f (t)dt = RHS.
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