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Area of sets

The main goal of integration theory is to assign area to subsets of R2.

We don’t have a satisfactory way of assigning area to all subsets.
Those subsets to which we can assign an area are called measurable.

The collection of measureable subsets is written M .
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Area axioms

Area a is defined to satisfy the following axioms.

Nonnegative property. For each set S in M , we have a(S) ≥ 0.

Additive property. If S and T are in M , then S ∪T and S ∩T are in
M , and we have

a(S ∪ T ) = a(S) + a(T )− a(S ∩ T ).

Difference property. If S and T are in M with S ⊂ T , then T \ S is
in M , and we have a(T \ S) = a(T )− a(S).
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Area axioms

Invariance under congruence. Say two sets S and T are congruent if
there is a bijection S → T which preserves lengths. If S ∈M and S
and T are congruent, then T ∈M and a(S) = a(T ).

Choice of scale. Every rectangle R is in M . If the edges of R have
lengths h and k , then a(R) = hk.

Exhaustion property. A step region is the union of several adjacent
rectangles. Let Q be a set enclosed between two step regions S , T ,
so that S ⊂ Q ⊂ T . If there is one and only one number c which
satisfies

a(S) ≤ c ≤ a(T )

for all pairs of step regions S , T enclosing Q, then a(Q) = c .
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Partitions

Let [a, b] be a closed interval.

A collection of points

a = x0 < x1 < x2 < · · · < xn−1 < xn = b

is called a partition of [a, b].

The partition is indicated P = 〈x0, x1, ..., xn〉.
The partition P determines open subintervals (x0, x1), (x1, x2), ...,
(xn−1, xn).

The common refinement of two partitions P1,P2 is P = P1 ∪ P2

(points taken in order).
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Step functions

A function s whose domain is the closed interval [a, b] is called a step
function if there is a partition P = 〈x0, x1, ..., xn〉 of [a, b] such that s is
constant on each open subinterval. In particular, for each 1 ≤ k ≤ n, there
is sk such that

s(x) = sk , if xk−1 < x < xk .

We say that s is subordinate to P.
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Step functions

Let P1,P2 be two partitions of [a, b] such that s is subordinate to both P1

and P2. Then s is subordinate to P1 ∩ P2. It follows that there is a
partition P of minimal cardinality such that s is subordinate to P. Any
partition P ′ of [a, b] to which s is subordinate can be obtained by adding
one or several points to P.
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Sums and products of step functions

Let s and t be step functions on [a, b]. Let P1 and P2 be partitions of
[a, b] such that s is constant on the open subintervals of P1, and t on
those of P2.

Let P be the common refinement of P1,P2.

Then s and t are both constant on the open subintervals of P. In
particular, s + t and st are step functions which are constant on the
open subintervals of P.
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The integral of a step function

Let s be a step function on [a, b], subordinate to the partition
P = 〈x0, x1, ..., xn〉. Suppose that

s(x) = sk if xk−1 < x < xk .

Definition

The integral of s from a to b, denoted
∫ b
a s(x)dx , is defined by the

following formula: ∫ b

a
s(x)dx =

n∑
k=1

sk · (xk − xk−1).
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The integral of a step function

The integral of a step function s is independent of the partition chosen.

Suppose that s is subordinate to a partition P and add a single
additional point t between xk−1 and xk .

The interval (xk−1, xk) is split into the two intervals (xk−1, t) and
(t, xk).

In the new sum, sk(xk − xk−1) is replaced by
sk(t − xk−1) + sk(xk − t), which leaves the sum unchanged.

Any partition to which s is subordinate can be obtained by adding
one or more points to the minimal partition, so each obtains the same
integral.
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Properties of the integral of a step function
Let s and t be step functions on [a, b].

Theorem (Additive property)∫ b

a
[s(x) + t(x)]dx =

∫ b

a
s(x)dx +

∫ b

a
t(x)dx .

Proof.

Choose a partition P = 〈x0, x1, ..., xn〉 to which both s, t are subordinate.
Then∫ b

a
[s(x) + t(x)]dx =

n∑
k=1

(sk + tk)(xk − xk−1)

=
n∑

k=1

sk(xk − xk−1) +
n∑

k=1

tk(xk − xk−1) =

∫ b

a
s(x)dx +

∫ b

a
t(x)dx .
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Properties of the integral of a step function

Theorem (Homogeneous property)

For every real number c, we have∫ b

a
c · s(x)dx = c

∫ b

a
s(x)dx .

Proof.

∫ b

a
c · s(x)dx =

n∑
k=1

csk(xk − xk−1)

= c
n∑

k=1

sk(xk − xk−1) = c

∫ b

a
s(x)dx .
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Properties of the integral of a step function

Theorem (Linearity property)

For every real c1 and c2, we have∫ b

a
[c1s(x) + c2t(x)]dx = c1

∫ b

a
s(x)dx + c2

∫ b

a
t(x)dx .

Proof.

Combine the previous two theorems.
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Properties of the integral of a step function

Theorem (Comparison theorem)

If s(x) < t(x) for every x ∈ [a, b], then∫ b

a
s(x)dx <

∫ b

a
t(x)dx .

Proof.

Write ∫ b

a
t(x)dx −

∫ b

a
s(x)dx =

n∑
k=1

(tk − sk)(xk − xk−1).

Being a sum of non-negative terms, the difference of integrals is
non-negative.
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Properties of the integral of a step function

Theorem (Additivity with respect to the interval of integration)

Let a < c < b. Then∫ c

a
s(x)dx +

∫ b

c
s(x)dx =

∫ b

a
s(x)dx .

Proof.

Let P = 〈x0, x1, ..., xn〉 be a partition of [a, b] which includes xm = c for
some 0 < m < n. Suppose s(x) is subordinate to P. Then∫ c

a
s(x)dx +

∫ b

c
s(x)dx =

m∑
k=1

sk(xk − xk−1) +
n∑

k=m+1

sk(xk − xk−1)

=
n∑

k=1

sk(xk − xk−1) =

∫ b

a
s(x)dx .
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Properties of the integral of a step function

Theorem (Invariance under translation)

For every real c, ∫ b

a
s(x)dx =

∫ b+c

a+c
s(x − c)dx .

Proof.

Let s(x) be subordinate to the partition P = 〈x0, x1, ..., xn〉. Then s(x − c)
is subordinate to the partition P + c = 〈x0 + c , x1 + c, ..., xn + c〉. Thus∫ b

a
s(x)dx =

n∑
k=1

sk(xk − xk−1)

=
n∑

k=1

sk(xk + c − (xk−1 + c)) =

∫ b+c

a+c
s(x − c)dx .
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Properties of the integral of a step function

Define
∫ a
b s(x)dx = −

∫ b
a s(x)dx , and

∫ a
a s(x)dx = 0.

Theorem (Expansion or contraction of the interval of integration)

For every c 6= 0, ∫ cb

ca
s
(x

c

)
dx = c

∫ b

a
s(x)dx .

Proof.

First suppose c > 0. Let s be subordinate to P = 〈x0, x1, ..., xn〉. Then
s
(
x
c

)
is subordinate to cP = 〈cx0, cx1, ..., cxn〉. Hence∫ cb

ca
s
(x

c

)
dx =

n∑
k=1

sk(cxk − cxk−1) = c

∫ b

a
s(x)dx .

Bob Hough Math 141: Lecture 5 September 14, 2016 17 / 33



Properties of the integral of a step function

Proof.

To prove the remainder of the claim, note that s(−x) is subordinate to
−P = 〈−xn,−xn−1, ...,−x0〉, and hence∫ −a

−b
s(−x)dx =

n∑
k=1

sn+1−k(−xn−k − (−xn−k+1))

=
n∑

k=1

sk(xk − xk−1) =

∫ b

a
s(x)dx

by making the substitution k = n − k + 1.

The last equality is called the reflection principle.
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The integral of a bounded function

Say f is bounded on [a, b] if there exists an M > 0 such that, for all
x ∈ [a, b], |f (x)| ≤ M.

Let S denote the set of step functions s ≤ f , and let T denote the set
of step functions t ≥ f . Both sets are non-empty, since s(x) = −M is
in S , and t(x) = M is in T .

Define the lower and upper integrals of f to be

I (f ) = sup

{∫ b

a
s(x)dx : s ∈ S

}
, I (f ) = inf

{∫ b

a
t(x)dx : t ∈ T

}
.

Note I (f ) ≤ I (f ).
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The integral of a bounded function

Definition

A bounded function f on [a, b] is integrable if I (f ) = I (f ). In this case,
define ∫ b

a
f (x)dx = I (f ).

Define, also, ∫ a

b
f (x)dx = −

∫ b

a
f (x)dx ,

∫ a

a
f (x)dx = 0.
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The graph of an integrable function

Theorem

Let f be a non-negative integrable function on [a, b], and let

Q = {(x , y) : a ≤ x ≤ b, 0 ≤ y ≤ f (x)}

denote the ordinate set of f . Then Q is measurable, and its area is equal to∫ b

a
f (x)dx .
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The graph of an integrable function

Proof.

Let s, t be step functions with s ≤ f ≤ t. The ordinate sets of these
step functions define step regions S and T with S ⊂ Q ⊂ T .

The area of S is the integral of s and the area of T is the integral of t.

It follows that the only real number which lies between the area of S
and the area of T for all step regions S ⊂ Q ⊂ T is

∫ b
a f (x)dx

(exhaustion).
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The graph of an integrable function

Theorem

Let f be a nonnegative function, integrable on an interval [a, b]. Then the
graph of f , that is, the set

{(x , y) : a ≤ x ≤ b, y = f (x)}

is measurable and has area equal to 0.

Proof.

Let
Q ′ = {(x , y) : a ≤ x ≤ b, 0 ≤ y < f (x)}.

Modify the rectangles used in the step regions S from the previous theorem
to exclude their boundary, without changing the measurability or area.
The argument now shows that Q ′ is measurable with area equal to Q, and
hence the graph of f , which is Q \ Q ′, is measurable, with area 0.
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Monotonic functions

A function f is monotone increasing (decreasing) on [a, b] if x < y
implies f (x) ≤ f (y) (f (x) ≥ f (y)).

A function f is strictly increasing (decreasing) on [a, b] if x < y
implies f (x) < f (y) (f (x) > f (y)).

A function is (strictly) monotonic on [a, b] if it is either (strictly)
monotone increasing or (strictly) monotone decreasing.

Bob Hough Math 141: Lecture 5 September 14, 2016 24 / 33



Examples of Monotonic functions

If p is a positive integer, it follows by induction that

xp < yp if 0 ≤ x < y .

Let f (x) =
√

x for x ≥ 0. This function is strictly increasing, since for
y > x

√
y −
√

x =
y − x
√

y +
√

x
> 0.

In fact, if n ≥ 1 is any positive integer and 0 ≤ x < y

y
1
n − x

1
n =

y − x

y
n−1
n + y

n−2
n x

1
n + ... + x

n−1
n

> 0

so x
1
n is strictly increasing. Thus x r is strictly increasing in x ≥ 0 for

any positive rational r .
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Monotonic functions are integrable

Theorem

Let f be monotonic on [a, b]. Then f is integrable on [a, b].

Proof.

Assume that f is increasing. Let Pn be the partition of [a, b] which divides
the interval into n equal intervals. Thus P = 〈x0, x1, ..., xn〉, and
xk = a + k

n (b − a). Define two step functions sn ≤ f ≤ tn for each k by

sn(x) = f (xk−1), tn(x) = f (xk), xk−1 ≤ x < xk ,

and sn(b) = tn(b) = f (b).
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Monotonic functions are integrable

Proof.

Then∫ b

a
tn(x)dx −

∫ b

a
sn(x)dx =

1

n

n∑
k=1

f (xk)− 1

n

n∑
k=1

f (xk−1) =
f (b)− f (a)

n
.

Note ∫ b

a
sn(x)dx ≤ I (f ) ≤ I (f ) ≤

∫ b

a
tn(x)dx

and thus, for each n = 1, 2, 3, ...

0 ≤ I (f )− I (f ) ≤ f (b)− f (a)

n
.

Thus, I (f ) = I (f ).
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The integral of a power function

Theorem

Let p ≥ 1 be an integer. Then
∫ b
0 xpdx = bp+1

p+1 .

Proof.

One has, for n = 1, 2, 3, ...

n−1∑
j=0

jp <
np+1

p + 1
<

n∑
j=1

jp

see HW4. In the context of the proof of the previous theorem,∫ b

0
sn(x)dx =

b

n

n−1∑
k=0

(
kb

n

)p

<
bp+1

p + 1
<

b

n

n∑
k=1

(
kb

n

)p

=

∫ b

0
tn(x)dx .

Since this holds for each n, the evaluation follows.

Bob Hough Math 141: Lecture 5 September 14, 2016 28 / 33



Properties of the integral

Theorem (Linearity with respect to integrand)

If f and g are integrable on [a, b], then for every pair of constants c1, c2,
c1f + c2g is integrable on [a, b]. Furthermore,∫ b

a
[c1f (x) + c2g(x)]dx = c1

∫ b

a
f (x)dx + c2

∫ b

a
g(x)dx .
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Properties of the integral

Theorem (Additivity with respect to the interval of integration)

If two of the following three integrals exist, the third also exists, and we
have ∫ b

a
f (x)dx +

∫ c

b
f (x)dx =

∫ c

a
f (x)dx .
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Properties of the integral

Theorem (Invariance under translation)

If f is integrable on [a, b], then for every real c we have∫ b

a
f (x)dx =

∫ b+c

a+c
f (x − c)dx .
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Properties of the integral

Theorem (Expansion or contraction of the interval of integration)

If f is integrable on [a, b], then for every real k 6= 0 we have∫ b

a
f (x)dx =

1

k

∫ kb

ka
f
(x

k

)
dx .
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Properties of the integral

Theorem (Comparison theorem)

If both f and g are integrable on [a, b] and if g(x) ≤ f (x) for every x in
[a, b], then we have ∫ b

a
g(x)dx ≤

∫ b

a
f (x)dx .
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