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N2 is countable

Theorem

Given (a, b) ∈ N2, define s = a + b. The map f3 : N2 → N defined by

f3(a, b) = s(s+1)
2 + b is a bijection.

Proof.

Observe that for each s = 0, 1, 2, ..., f3 maps the set {(a, b) : a + b = s}
bijectively onto

{
n ∈ N : s(s+1)

2 ≤ n < (s+1)(s+2)
2

}
. Since each n ∈ N lies

in exactly one interval s(s+1)
2 ≤ n < (s+1)(s+2)

2 , the claim follows.
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N2 is countable
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The pigeonhole principle

Define [1] = {1}, and, recursively, for n ≥ 1, [n + 1] = [n] ∪ {n + 1}. Thus
for natural number n ≥ 1, [n] = {1, 2, 3, ..., n}.

Theorem

Let 1 ≤ m < n be natural numbers. There does not exist an injective
function from [n] to [m].
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Pigeonhole example

Theorem

Let n ≥ 1 and let x1, x2, ..., xn+1 be n + 1 real numbers from the half-open
interval (0, 1]. There exist 1 ≤ i < j ≤ n + 1 with |xi − xj | < 1

n .

Proof.

Form n half-open intervals {Ii}ni=1, Ii =
(
i−1
n , i

n

]
. These intervals are

disjoint and their union is (0, 1]. Let f : [n + 1]→ [n] be defined by letting
f (i) be the index of the interval that contains xi . By the pigeonhole
principle, f is not an injection, so there exists some ` ∈ [n] and some
1 ≤ i < j ≤ n + 1 with f (i) = f (j) = `. It follows that

`

n
< xi , xj ≤

`+ 1

n

and thus |xi − xj | < 1
n .
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Countable sets

Theorem

Let S ⊂ N be a non-empty set. Then either there is an n ∈ N, n ≥ 1 such
that there is a bijection f : [n]→ S or else there exists a bijection
f : N \ {0} → S.
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Countable sets

Proof sketch.

Define a sequence of sets S0 = S and, for n ≥ 0, if Sn is non-empty,
then Sn+1 is Sn \ {min Sn}, otherwise Sn+1 = ∅.
Consider the set A of n for which Sn = ∅. If A is non-empty it has a
least element M.

Define a function f from [M] (or N \ {0} if A is empty) to S , defined
by f (n) is the least element of Sn−1. Check by induction that if
m < n then f (m) < f (n) so f is injective. Use the well-ordering
principle to show f is surjective.
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Countable sets

The previous theorem gives an alternative characterization of the
countable sets. A set S is countable if and only if either S is in bijection
with [n] for some n ∈ N, or S is in bijection with N. Thus, the elements of
S can be listed in order s1, s2, s3, ... in a finite or infinite sequence, and
every element of S will be reached.
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The reals are uncountable

Theorem

The interval (0, 1] is uncountable.

Proof.

We use the characterization of countability from the previous slide. The
set (0, 1] is not finite, as it contains { 1n : n ∈ N, n > 1}, so suppose for
contradiction that (0, 1] has been enumerated in an infinite sequence
(0, 1] = {xn}n∈N. Let xn have binary expansion 0.a1,na2,na3,n....
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The reals are uncountable

Proof.

Define another binary expansion 0.a1a2a3... by

an =

{
1 n odd
1− an,n/2 n even

Since the sequence a1, a2, ... contains an infinite number of 1s, it
corresponds to a real number x ∈ (0, 1]. But x 6= xn for any n, since it
differs at the 2nth term of the binary expansion.

The technique of this proof is called ‘diagonalization’. It plays an
important role in mathematical analysis.
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Schröder-Bernstein Theorem

The following is a ‘gem theorem’ from elementary set theory.

Theorem (Schröder-Bernstein Theorem)

Let A and B be sets, and suppose there exist injective maps f : A→ B
and g : B → A. Then there exists a bijective map h : A→ B.

Proof.

Define for n ≥ 1, (g ◦ f )◦n : A→ A inductively for n ≥ 1 by

(g ◦ f )◦1 = g ◦ f

For n ≥ 1, (g ◦ f )◦n+1 = (g ◦ f ) ◦ (g ◦ f )◦n.

Similarly define (f ◦ g)◦n : B → B for n ≥ 1.
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Schröder-Bernstein Theorem
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Schröder-Bernstein Theorem

Proof.

Define nested sequence of sets S1 ⊃ S2 ⊃ S3 ⊃ ...,
S1 = A, S2 = g(B)

For n ≥ 1, S2n+1 = (g ◦ f )◦n(A), S2n+2 = (g ◦ f )◦n ◦ g(B).

Similarly define T1 ⊃ T2 ⊃ T3 ⊃ ...,
T1 = B, T2 = f (A)

For n ≥ 1, T2n+1 = (f ◦ g)◦n(B), T2n+2 = (f ◦ g)◦n ◦ f (A)

For n = 1, 2, 3, ..., f : Sn → Tn+1 and g : Tn → Sn+1 are both
bijections.
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Schröder-Bernstein Theorem

Proof.

Define for n = 1, 2, 3, ...,

An = Sn \ Sn+1, Bn = Tn \ Tn+1

The An are pairwise disjoint, as are the Bn. Also, f : An → Bn+1 and
g : Bn → An+1 are bijections.
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Schröder-Bernstein Theorem

Proof.

Define W =
⋃∞

n=1 A2n−1, V =
⋃∞

n=1 B2n. Thus f : W → V is a bijection.
We claim g : B \ V → A \W is a bijection.

If x ∈ B \ V , then x 6∈ B2n for all n, whence g(x) 6∈ A2n−1 for all n,
so g(x) ∈ A \W , so the function is well defined.

If y ∈ A \W , then y 6∈ A2n−1 for all n. In particular, y 6∈ A1 so
y ∈ g(B) has a pre-image x . It follows that x ∈ B \ V , whence the
map is surjective.

The map is injective because g is injective on all of B.
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Schröder-Bernstein Theorem

Proof.

Define h : A→ B by

h(y) =

{
f (y) y ∈W
g−1(y) y ∈ A \W

to complete the proof.
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The field of complex numbers

The field C of complex numbers consists of pairs of real numbers
(a, b) written a + bi .

The complexes originate from solving the equation x2 = −1. The
solution is the imaginary number i =

√
−1.

Addition and subtraction are performed coordinatewise
(a + bi) + (a′ + b′i) = a + a′ + (b + b′)i .

Multiplication is performed by treating i as a variable whose square is
−1:

(a + bi)(c + di) = ac − bd + (ad + bc)i .

The reals embed by mapping a 7→ (a, 0). All of their usual properties
apply.
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The field of complex numbers
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The field of complex numbers

The complex numbers have a beautiful geometric interpretation.

Addition and subtraction are performed as vector addition and vector
subtraction in a two dimensional space.
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The field of complex numbers

Multiplication and division are most easily performed in polar
coordinates. Given z = a + bi ,

r =
√

a2 + b2, θ = sin−1
(

b√
a2 + b2

)
+ 2nπ, n ∈ Z

a = r cos θ, b = r sin θ.

Given z1 = r1 cos θ1 + ir1 sin θ1, z2 = r2 cos θ2 + ir2 sin θ2,

r(z1z2) = r1r2, θ(z1z2) = θ1 + θ2.

To multiply, multiply the radii and add the angles.

If z2 6= 0,

r

(
z1
z2

)
=

r(z1)

r(z2)
, θ

(
z1
z2

)
= θ1 − θ2.
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The field of complex numbers

To check the multiplication rule, write z1 = r1(cos θ1 + i sin θ1),
z2 = r2(cos θ2 + i sin θ2),

z1z2 = r1r2(cos θ1 cos θ2 − sin θ1 sin θ2)

+ ir1r2(cos θ1 sin θ2 + sin θ1 cos θ2)

= r1r2(cos(θ1 + θ2) + i sin(θ1 + θ2)).

Theorem (de Moirve’s Theorem)

Let θ ∈ R and n ∈ Z. Then

(cos θ + i sin θ)n = cos(nθ) + i sin(nθ).
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Euler’s formula

A beautiful formula due to Euler is as follows: for θ ∈ R,

e iθ = cos θ + i sin θ.

This permits writing complex number a + bi 6= 0 as

a + bi = e log r+iθ.

Thus all non-zero complex numbers may be expressed as the exponential
of a complex number. The addition rule of the exponential function
includes the law of multiplication.
We will prove Euler’s formula rigorously by the end of the course.
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The field of complex numbers

The conjugate of complex number z = a + bi is z = a− bi . In polar
coordinates, θ(z) = −θ(z). One has r2 = zz , whence 1

z = z
r2

. This
satisfies

z1 + z2 = z1 + z2

z1 · z2 = z1z2.
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The fundamental theorem of algebra

Gauss proved the following theorem about the complex numbers.

Theorem (Fundamental theorem of algebra)

Let P(z) = anzn + an−1zn−1 + · · ·+ a0 be a polynomial of degree at least 1
with complex coefficients. The equation P(z) = 0 has a complex solution.

A highlight of the course is a rigorous proof of this theorem.
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The division algorithm

Theorem (The divison algorithm for polynomials)

Let F be a field, and let D(x) be a non-zero polynomial with coefficients
in F. For any polynomial B(x) with coefficients in F there exist unique
polynomials Q(x), R(x) with coefficients in F, such that

B(x) = Q(x)D(x) + R(x)

with deg R(x) < deg D(x). [We use the convention that 0 has negative
degree.]

For a proof, see HW#3.
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The fundamental theorem of algebra

Theorem (Fundamental theorem of algebra, variant)

Let P(z) = anzn + an−1zn−1 + · · ·+ a0, an 6= 0 be a polynomial with
complex coefficients. There are complex numbers z1, ..., zn such that

P(z) = an

n∏
j=1

(z − zj).

Bob Hough Math 141: Lecture September 12, 2016 26 / 36



The fundamental theorem of algebra

Proof.

The proof is by induction, assuming the FTA stated previously.

Base case: If n = 0 then the statement is true with an empty product.

Inductive step: Suppose for all polynomials of degree n, a factorization
of the given type is true. Let P(z) by a polynomial of degree n + 1
with leading coefficient an+1. Let zn+1 ∈ C be a root of P(z).

By the division algorithm,

P(z) = (z − zn+1)Q(z) + R(z)

where R(z) is a constant. We have R(z) = 0 (choose z = zn+1).

The leading coefficient of Q(z) is an+1, so the theorem follows from
the inductive assumption.
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The distance function on R

Define a distance function d(·, ·) on R by

d(x , y) = |x − y |.

This satisfies the following properties.

Symmetry: For all x , y ∈ R, d(x , y) = d(y , x)

Nondegeneracy: d(x , y) = 0 implies x = y .

Triangle inequality: For all x , y , z ∈ R,

d(x , y) + d(y , z) ≥ d(x , z).

A function which satisfies the listed properties above on a set is called a
‘metric.’ The set together with the metric is called a ‘metric space.’
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Proof of the triangle inequality

Theorem

Let x , y , z be real numbers. Then |x − y |+ |y − z | ≥ |x − z |.

Proof.

We may assume that x ≥ y , since otherwise, replace x , y , z with their
negatives. There are three cases to consider:

1 z ≥ x : The LHS is x − y + z − y = x + z − 2y . The RHS is z − x .
The claim reduces to x + z − 2y ≥ z − x or 2x ≥ 2y , which is true.

2 y ≤ z < x : The LHS is x − y + z − y = x + z − 2y . The RHS is
x − z . The inequality reduces to x + z − 2y ≥ x − z or 2z ≥ 2y ,
which is true.

3 z < y : The LHS is x − y + y − z = x − z . The RHS is also x − z , so
equality holds.

Bob Hough Math 141: Lecture September 12, 2016 29 / 36



The Cauchy-Schwarz inequality

Theorem

Let n ≥ 1 be an integer, and let x1, ..., xn, y1, ..., yn be real numbers. We
have  n∑

j=1

xjyj

2

≤

 n∑
j=1

x2
j

 n∑
j=1

y2
j

 .

Equality holds if and only if there is a real number λ such that either
(x1, ..., xn) = λ(y1, ..., yn) or λ(x1, ..., xn) = (y1, ..., yn).
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The Cauchy-Schwarz inequality

Proof.

Write the RHS minus the LHS as (expand the square)

n∑
j ,k=1

(x2
j y2

k − xjxkyjyk) =
1

2

n∑
j ,k=1

(x2
j y2

k − 2xjxkyjyk + x2
k y2

j )

=
1

2

n∑
j ,k=1

(xjyk − xkyj)
2 ≥ 0.

Equality holds only if each term is zero. Suppose without loss of generality
that x1 6= 0. Then for each j , x1yj = xjy1 implies

yj =
y1
x1

xj ,

which gives the claimed condition with λ = y1
x1

.

Bob Hough Math 141: Lecture September 12, 2016 31 / 36



The Cauchy-Schwarz inequality

Claim: Let x1, x2, ..., xn be n real numbers satisfying 1
n

∑n
i=1 xi = 1. Then

1

n

n∑
i=1

x2
i ≥ 1.

Proof: Apply Cauchy-Schwarz to x = (x1, ..., xn) and y = (1/n, ..., 1/n) to
find

1 =

(
1

n

n∑
i=1

xi

)2

≤

(
n∑

i=1

x2
i

)(
n∑

i=1

1

n2

)
=

1

n

n∑
i=1

x2
i .

Bob Hough Math 141: Lecture September 12, 2016 32 / 36



The Euclidean distance function on Rn

Euclidean n-space is the set of n-tuples of real numbers

Rn = {(x1, ..., xn) : x1, ..., xn ∈ R}

together with the distance function

d((x1, ..., xn), (y1, ..., yn)) =

√√√√ n∑
i=1

(xi − yi )2.

This distance satisfies the conditions of metric, i.e. is symmetric,
non-degenerate and satisfies the triangle inequality.
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Proof of the triangle inequality

Theorem

Let x = (x1, ..., xn), y = (y1, ..., yn), z = (z1, ..., zn) be three points of Rn.
We have

d(x , y) + d(y , z) ≥ d(x , z).

Proof.

It’s equivalent to check the inequality√∑n
i=1 x2

i +
√∑n

i=1 y2
i ≥

√∑n
i=1(xi + yi )2 since we can replace x − y

with x and y − z with y . To check the above, square both sides.

LHS2 =
n∑

i=1

x2
i +

n∑
i=1

y2
i + 2

√√√√ n∑
i=1

x2
i

√√√√ n∑
i=1

y2
i .

RHS2 =
n∑

i=1

(xi + yi )
2 =

n∑
i=1

x2
i +

n∑
i=1

y2
i + 2

n∑
i=1

xiyi .
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Proof of the triangle inequality

Proof.

Thus, by Cauchy-Schwarz

LHS2 − RHS2 = 2

√√√√ n∑
i=1

x2
i

√√√√ n∑
i=1

y2
i −

n∑
i=1

xiyi

 ≥ 0.

Since both LHS and RHS are positive, LHS ≥ RHS follows from
LHS2 ≥ RHS2.
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Other distance functions on Rn

Several other distance functions on Rn are popular, including

The Manhattan distance: d(x , y) =
∑n

i=1 |xi − yi |.
The chessboard distance: d(x , y) = maxi |xi − yi |.

For each 1 < p <∞, the `p distance: d(x , y) = (
∑n

i=1 |xi − yi |p)
1
p .

The triangle inequalities in the first two cases reduce to the triangle
inequality on R. In the third case, the triangle inequality is known as
Minkowski’s inequality. We may prove this later in the course.
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