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The field with 4 elements

Field: A set with 0, 1, and operations +, —, X, + such that 4, x are
commutative, associative and x distributes over +.
Let F be a field with 4 elements.

@ Two of them are 0, 1.

@ Let n > 2 be the least number of times 1 must be added to itself to
reach 0.

@ n must divide the size of the field, since the field splits into sets of the
form {x,x + 1,...,x + n — 1} which are disjoint. Hence n =2 or
n=4.

If n=4 then F ={0,1,2,3}, but this forces 2 x 2 = 0, whence
2=2"1%2x%x2=0, a contradiction, so n = 2.
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The field with 4 elements

Call the two remaining elements of the field x and x + 1. We've thus
worked out the addition table of the field

+ ‘0 1 X x+1
0 0 1 X x+1
1 1 0 x+1 x
X X x+1 0 1
x+1|x+1 x 1 0
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The field with 4 elements

To know the multiplication table we need to know x x x. Since the
product of non-zero elements is non-zero we rule out x> =0, x*> =1
(which forces (x + 1)(x — 1) = (x + 1)? = 0) and x? = x (which forces
(x —1)x = (x+1)x =0). Hence x> = x+1, so

x(x 4+ 1) = x?2 — x = —1 = 1. The multiplication table becomes
X 01 X x+1
0 00 0 0
1 01 X x+1
X 0 x x+1 1
x+1]0 x+1 1 X

Bob Hough Math 141: Lecture 3 September 7, 2016 4 / 44



The field with 4 elements

From the addition and multiplication table, one could directly verify that F
is an example of a field.
An alternative route:
@ Let F, be the field with 2 elements, and verify that F;[x], that is,
polynomials with F, coefficients, is a ring.
o Fy = F[x]/(x? 4+ x + 1) is the ring which one obtains by setting
multiples of x? + x + 1 equal to 0 in F[x].
@ The ring properties of F4 follow from those of F;[x], and the
multiplication table guarantees that multiplicative inverses exist, so Fy
is a field.
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Finite fields

@ For every prime p and for every n > 1 there is exactly one field with
p" elements.

@ These are all of the finite fields.

@ This fact is often proven in advanced undergraduate algebra courses.
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Properties of the reals

Last lecture we introduced the reals R as an ordered field containing the
rationals, and satisfying the least upper bound property. Let's briefly recall
what this means:

o Field: A set with 0, 1, and operations +, —, X, + such that 4, x are
commutative, associative and x distributes over 4+

@ Ordered: There exists a set P of positive elements such that 0 ¢ P,
but for all x #0, x or —x is in P. If x,y € P then x + y and xy are
in P.

@ The least upper bound property: Any set which is non-empty and
bounded above has a least upper bound.
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Properties of the reals

Last lecture we verified that x> = 2 does not have a solution in Q. We
also checked that in R, if

S={yeR:0<y,y? <2}

then x = sup S satisfies x> = 2. Hence Q # R and Q does not satisfy the
least upper bound property.
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Dedekind cuts

f

Numbers are the free creation
of the human mind.

~ Richard Dedekind

(Source: AZ quotes)
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Dedekind cuts

A Dedekind cut is a subset o C QQ satisfying
QO a#landa#Q
Q@lfpcaandgeQand g<pthengean
O If p €, then p < r for some r € a.

As a set, R consists of the set of cuts of QQ.
Define a < B if « C 8 but a # .
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Dedekind cuts

Q is identified as a subset of R by identifying g € Q with

g ={pcQ:p<q}

The additive and multiplicative identities are 0* and 1*.
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Dedekind cuts

Addition is defined as set addition:

a+p={x+y:x€aycep}

The additive inverse is

—a={peQ:3reQ,r>0,—p—ré&a}

In words, p € —a if there is a rational g > p with —q & a.
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Dedekind cuts

If a, 8 > 0 then
axpf={pxq:p,g>0,pca,qgeflU{xeQ:x <0}
Multiplication is extended by the usual rules

(—a) x B = (a) x (—B) = —(a x B), (=a) x (=B) = a x B, and

0* x a=a x 0* =0*.
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Dedekind cuts

There is some work to do to verify that these constructions are well
defined and make R an ordered field. For instance, it's necessary to check

that a4+ 8, a x 3, —«, and g* are all cuts, and that the constructions
satisfy the field and order axioms.

In lecture we'll check that R satisfies the trichotomy and least upper
bound properties.

Bob Hough Math 141: Lecture 3 September 7, 2016 14 / 44



Trichotomy

Theorem (Trichotomy law for R)
Let o and B be cuts. Exactly one of « < 8, a« = 8 or a > 3 is true.

Proof.

We need to show that at least one of these is true, since at most one is
true by the definition of subset.

@ Suppose o £ [ and a # 3. Then o ¢ (3 so choose g € a\ S.

@ Let re 3. Then r # g and r # q or else g would be a member of 3,
sor<gq.

@ Hence r € @ so B C a and B # a, thus § < a.
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The l.u.b. property

Theorem (The l.u.b. property of R)

Let S C R be a non-empty set of cuts, and suppose that there is « € R
which is an upper bound for S. Then there is s € R with

s=supS.

Recall what these definitions mean.
@ « is an upper bound for S means, for each € S, g < a.

@ s =supS means that s is an upper bound for S, and if « is any
upper bound for S then s < a.
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The l.u.b. property

Proof of the l.u.b. property of R.
Define s = (Jgcg 8. We first check that s is a cut and s < a.

© Choose 5 € S. Then 3 C s, so s is non-empty. Let x € s. Then there
is B € S such that x € 3, and since 8 < «, x € a. Thus s C «a so
s # Q.

@ Let pesandlet g € Q with g < p. Choose 8 € S such that p € 5.
Then g€ Bsoqgé€s.

© Let p € s and choose 8 € S such that p € 5. Then there is r > p
with r € 8. Hence r € s satisfies r > p.

The verification above shows that s is a cut. (1)
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The l.u.b. property

Proof of the l.u.b. property of R.

Recall s = Uﬂes 5. Note that this implies, for all 5 € S, 5 <'s, so s is an
upper bound for S.

It remains to check that s is the least upper bound for S. Let « be an
upper bound for S. For each 8 € S, 8 C . Hence s = Uﬁesﬂ C a which
proves s < a. ]

v
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Binary representation of real numbers

Let x € R, 0 < x < 1. The binary decimal representation of x is a
sequence ajy, a2, as, ..., where each a; € {0, 1}, and represented as

x = 0.21323334.... The a; are defined as follows.
Define a3 = 1 if 1 € 2x, otherwise a; = 0. In general, define recursively

Xg = X

a,—{ 1 if 1 €2x_1

- _
vizl, 0 otherwise

Xj = 2X,',1 — aj.
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Binary representation of real numbers

Recall for 0 < x <1, x = 0.a1apa3... with

Xg = X
Vi1, 2 = 1 if1e 2_x,-_1
0 otherwise
Xj = 2X,',1 — aj.
Examples:

1

5= 0.011111111111111...

% =0.0101010101010101...

This construction chooses non-terminating expansions.
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Binary representation of real numbers
Theorem

Let x and y be real numbers satisfying 0 < x < y < 1. The binary
representations of x and y are equal if and only if x = y.

Proof.
Suppose x < y.

@ There exist a pair of rationals p < g such that p, g € y but neither p
nor g is in x.

@ Choose n such that 2"(q — p) > 2
O Find integer m > 1 such that p < & < Ztl < ¢

@ Perform the binary expansion procedure S|multaneous|y on x, y,
z=m w =L Stop at the first step i at which there is a
disagreement (/ < n)

© Since the first i — 1 steps agree, xj_1 < zi_1 < w;_1 < y;_1 and
hence the ith digit of x is 0, whilst the jth digit of y is 1.

[ ]
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Binary representation of real numbers

Theorem

Let a1, ap, a3, ... be a sequence of Os and 1s, (formally a is a function
a:{1,2,3,...} —{0,1}) containing infinitely many 1s. There is a real
number x, 0 < x < 1 with 0.a1apas... as its binary expansion.

Proof.
o Define S = {31 5 :ne€{1,2,3,..}}. Notes<1forallseS.
@ Define x =sup S and note 0 < x < 1.
@ Let x = 0.b1b2b3 and let i be the first index with b; # a;.
@ Since x > Z L 2J . (there is an ¢ > i with ay = 1), rule out b; = 0,
a; = 1 since a; = 1 implies 2x;_1 > 1.
o lfbj=1,a;, =0, thenx>z 12], but in fact, Z 1—j is an upper

2)
bound for S, a contradiction (this uses that anl ET

O]

v
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Composition of functions

Definition
Let A, B, C be sets, and let f : A— B and g : B — C be functions. The
composition of f and g is the function go f : A — C defined at x € A by

g o f(x) = g(f(x)).
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Composition of functions

Theorem

Function composition is associative: If A, B, C and D are sets, and
f:A— B,g:B— Candh: C — D are functions, then

ho(gof)=(hog)of.

Proof.
Let f:a—~ b, g:b—c, h:c— d, then

ho(gof):a— c—d, (hog)of:a—b—d.

Both combine to a — d.
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Composition of functions

Examples of composition:
o f:Rt 5 RY, g: Rt - R, f(x) =x2, g(x) =1. Then
fog(x):gof(x):%.
o f:R—=R, g:R—R, f(x)=x+3, g(x) =x2 Then

fog(x)=x*>+3, gof(x)=x*+6x+09.

Composition is an operation which is not generally commutative.
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Properties of composition

Theorem

Let f: A— B and g : B — C be functions.
o Iff and g are both surjective, then g o f is surjective.
e Iff and g are both injective, then g o f is injective.
e Iff and g are both bijective, then g o f is bijective.

Proof.

@ Surjective: Let z € C. Since g is surjective, choose y € B with

g(y) = z. Since f is surjective, choose x € A satisfying f(x) = y.
Then g(f(x)) = z.

@ Injective: Suppose that x and y in A satisfy g o f(x) = g o f(y).
Injectivity of g implies f(x) = f(y). Then injectivity of f implies
X=y.

@ Bijective: Combine surjective and injective.

Ol
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Inverse functions

Definition
Let f : A— B be a bijective function. The inverse function of f is the

function f~1 : B — A defined at y € B by f~1(y) is the unique x such
that f(x) =y.

Note that we already used the notation f~%(y) for the preimage of the
point y in the context of a not necessarily bijective function. The notation
is used in both ways and must be understood from the context.
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Inverse functions

Examples:
o f(x) = x? is bijective from RT — RT with f~1(y) = \/y.
o f(x) = e is bijective from R to R*, with inverse f1(y) = logy

o f(x) = tanx is bijective from {x e R: =5 < x < 7} to R, with
inverse f~1(y) = tan~1(y).
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Intervals

We use the usual notation regarding intervals. Let a < b be real numbers.
@ The open interval (a,b) = {x € R:a < x < b}
@ The closed interval [a,b] = {x e R:a < x < b}
© The half-open intervals (a,b] = {x € R: a < x < b} and
[a,b) ={x e R:a<x < b}
@ The open infinite intervals (a,00) = {x € R: x > a} and
(—o0,a) ={xeR:x< a}
@ The closed infinite intervals [a,00) = {x € R : x > a} and
(—o0,al ={xeR:x < a}.
@ The real line (—o0,0) = R.
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The rationals are countable

Recall that a set S is countable if there is an injective function f : S — N.

Theorem

The field of rational numbers is countable.

Proof.

© Write each g € Q as g = 3 where a,b € Z, b > 0 and GCD(a, b) = 1.
The map f; : g — (a, b) is an injective function Q — Z?2.

@ Define p: Z — N by p(x) =2x if x > 0 and p(x) = —2x — 1 if
x < 0. This is injective. It follows that f, : Z? — N2,
(x, ¥) = (plx), (y)) is injective.

© Given (a,b) € N2, set s = a + b and define f3(a, b) = @ + b. We

claim that £ is a bijective map from N2 — N. Assuming this,
fs3ofhofp:Q — Nis an injection.

O]

v
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The rationals are countable
N .

T\
N
N
%
N
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The rationals are countable

Theorem

Given (a, b) € N?, define s = a+ b. The map 5 : N> — N defined by
f3(a, b) = S(SH) + b is a bijection.

Proof.
Observe that for each s =0, 1,2, ..., f3 maps the set {(a,b): a+ b =s}
bijectively onto {n eN: @ <n< @4-1)2& . Since each n € N lies

| s(s;—l) (s+1)

in exactly one interva <n< # the claim follows. []

v
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The pigeonhole principle

Define [1] = {1}, and, recursively, for n > 1, [n+ 1] = [n]U {n+ 1}. Thus
for natural number n > 1, [n] = {1,2,3, ..., n}.

Theorem

Let 1 < m < n be natural numbers. There does not exist an injective
function from [n] to [m].
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The pigeonhole principle

Proof of the pigeonhole principle.

@ This is true for m =1 for all n > 1 since a map f : [n] — [1] satisfies
f(2)=1f(1) =1.
@ Suppose the statement for some 1 < m < n, and suppose there exists
an injection from f : [n+ 1] — [m+ 1]. If thereis 1 </ < n+ 1 with
f(i) = m+1, redefine (i) := f(n+1),f(n+ 1) := f(i). f is still an
injection, and in fact defines an injection [n] — [m], a contradiction.
The claim now follows from the variant of induction from HW1 #2: the

statement proven is that for any pair m, n either m > n or there does not
exist an injection [n] — [m]. O

v
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Pigeonhole examples

Theorem

Let n > 1 and let x1,x2, ..., Xn+1 be n+ 1 real numbers from the half-open
interval (0, 1]. Prove that there exist 1 < i < j < n+1 with |x; — xj| < %

Proof.
i-1

Form n half-open intervals {/;}7_,, I; = (T’ ﬁ] These intervals are
disjoint and their union is (0,1]. Let f : [n+ 1] — [n] be defined by letting
f(i) be the index of the interval that contains x;. By the pigeonhole
principle, f is not an injection, so there exists some ¢ € [n] and some

1<i<j<n+1with f(i) = f(j) = ¢. It follows that

+1
n

_<XI'7XJ'S
n

and thus |x; — x;| < 1. O

v
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Pigeonhole examples

Theorem

Given a set S C [100] containing at least 51 elements, prove that there are
x,y € S with x + y = 101.

v

Proof.
Form sets P; = {j,101 — j} for 1 < j < 50. Define f : S — [50] by
assigning to s € S the index of the set to which it belongs. By the

pigeonhole principle, two elements of S map to the same index, and hence
have sum 101. [

v
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