Math 141: Lecture 3 Constructing the reals, cardinality questions

Bob Hough

September 7, 2016

Bob Hough

Math 141: Lecture 3

September 7, 2016 1 / 44

< 4 → <

3

Field: A set with 0, 1, and operations $+, -, \times, \div$ such that $+, \times$ are commutative, associative and \times distributes over +.

- Let F be a field with 4 elements.
 - Two of them are 0, 1.
 - Let n ≥ 2 be the least number of times 1 must be added to itself to reach 0.
 - n must divide the size of the field, since the field splits into sets of the form {x, x + 1, ..., x + n 1} which are disjoint. Hence n = 2 or n = 4.

If n = 4 then $F = \{0, 1, 2, 3\}$, but this forces $2 \times 2 = 0$, whence $2 = 2^{-1} \times 2 \times 2 = 0$, a contradiction, so n = 2.

- 31

(日) (周) (三) (三)

Call the two remaining elements of the field x and x + 1. We've thus worked out the addition table of the field

+	0	1	X	x + 1
0	0	1	x	x+1
1	1	0	x + 1	x
x	x	x + 1	0	1
x + 1	x+1	x	1	0

3

(日) (同) (三) (三)

To know the multiplication table we need to know $x \times x$. Since the product of non-zero elements is non-zero we rule out $x^2 = 0$, $x^2 = 1$ (which forces $(x + 1)(x - 1) = (x + 1)^2 = 0$) and $x^2 = x$ (which forces (x - 1)x = (x + 1)x = 0). Hence $x^2 = x + 1$, so $x(x + 1) = x^2 - x = -1 = 1$. The multiplication table becomes

×	0	1	X	x + 1
0	0	0	0	0
1	0	1	x	x + 1
x	0	x	x + 1	1
x + 1	0	x + 1	1	x

From the addition and multiplication table, one could directly verify that F is an example of a field.

An alternative route:

- Let F_2 be the field with 2 elements, and verify that $F_2[x]$, that is, polynomials with F_2 coefficients, is a ring.
- F₄ = F₂[x]/(x² + x + 1) is the ring which one obtains by setting multiples of x² + x + 1 equal to 0 in F₂[x].
- The ring properties of F_4 follow from those of $F_2[x]$, and the multiplication table guarantees that multiplicative inverses exist, so F_4 is a field.

Finite fields

- For every prime p and for every $n \ge 1$ there is exactly one field with p^n elements.
- These are all of the finite fields.
- This fact is often proven in advanced undergraduate algebra courses.

Properties of the reals

Last lecture we introduced the reals \mathbb{R} as an ordered field containing the rationals, and satisfying the least upper bound property. Let's briefly recall what this means:

- Field: A set with 0, 1, and operations +, −, ×, ÷ such that +, × are commutative, associative and × distributes over +
- Ordered: There exists a set P of positive elements such that 0 ∉ P, but for all x ≠ 0, x or -x is in P. If x, y ∈ P then x + y and xy are in P.
- The least upper bound property: Any set which is non-empty and bounded above has a least upper bound.

Properties of the reals

Last lecture we verified that $x^2 = 2$ does not have a solution in \mathbb{Q} . We also checked that in \mathbb{R} , if

$$S = \{y \in \mathbb{R} : 0 < y, y^2 < 2\}$$

then $x = \sup S$ satisfies $x^2 = 2$. Hence $\mathbb{Q} \neq \mathbb{R}$ and \mathbb{Q} does not satisfy the least upper bound property.

Dedekind cuts

(Source: AZ quotes)

< 4 →

Dedekind cuts

A Dedekind cut is a subset $\alpha \subset \mathbb{Q}$ satisfying

 $\ \, \bullet \neq \emptyset \text{ and } \alpha \neq \mathbb{Q}$

2 If $p \in \alpha$ and $q \in \mathbb{Q}$ and q < p then $q \in \alpha$

3 If $p \in \alpha$, then p < r for some $r \in \alpha$.

As a set, \mathbb{R} consists of the set of cuts of \mathbb{Q} . Define $\alpha < \beta$ if $\alpha \subset \beta$ but $\alpha \neq \beta$. $\mathbb Q$ is identified as a subset of $\mathbb R$ by identifying $q\in \mathbb Q$ with

$$q^* = \{ p \in \mathbb{Q} : p < q \}.$$

The additive and multiplicative identities are 0^* and 1^* .

DI		
BOD	HOUGT	1

< 67 ▶

Addition is defined as set addition:

$$\alpha + \beta = \{ \mathbf{x} + \mathbf{y} : \mathbf{x} \in \alpha, \mathbf{y} \in \beta \}.$$

The additive inverse is

$$-\alpha = \{ p \in \mathbb{Q} : \exists r \in \mathbb{Q}, r > 0, -p - r \notin \alpha \}$$

In words, $p \in -\alpha$ if there is a rational q > p with $-q \notin \alpha$.

3

(日) (同) (三) (三)

If $\alpha, \beta > 0$ then

$$\alpha \times \beta = \{ p \times q : p, q > 0, p \in \alpha, q \in \beta \} \cup \{ x \in \mathbb{Q} : x \le 0 \}.$$

Multiplication is extended by the usual rules $(-\alpha) \times \beta = (\alpha) \times (-\beta) = -(\alpha \times \beta), (-\alpha) \times (-\beta) = \alpha \times \beta$, and $0^* \times \alpha = \alpha \times 0^* = 0^*$.

<20 ≥ 3

- ∢ 🗇 እ

Dedekind cuts

There is some work to do to verify that these constructions are well defined and make \mathbb{R} an ordered field. For instance, it's necessary to check that $\alpha + \beta$, $\alpha \times \beta$, $-\alpha$, and q^* are all cuts, and that the constructions satisfy the field and order axioms.

In lecture we'll check that $\mathbb R$ satisfies the trichotomy and least upper bound properties.

Trichotomy

Theorem (Trichotomy law for \mathbb{R})

Let α and β be cuts. Exactly one of $\alpha < \beta$, $\alpha = \beta$ or $\alpha > \beta$ is true.

Proof.

We need to show that at least one of these is true, since at most one is true by the definition of subset.

- Suppose $\alpha \not\leq \beta$ and $\alpha \neq \beta$. Then $\alpha \not\subseteq \beta$ so choose $q \in \alpha \setminus \beta$.
- Let r ∈ β. Then r ≠ q and r ≯ q or else q would be a member of β, so r < q.
- Hence $r \in \alpha$ so $\beta \subset \alpha$ and $\beta \neq \alpha$, thus $\beta < \alpha$.

The I.u.b. property

Theorem (The l.u.b. property of \mathbb{R})

Let $S \subset \mathbb{R}$ be a non-empty set of cuts, and suppose that there is $\alpha \in \mathbb{R}$ which is an upper bound for S. Then there is $s \in \mathbb{R}$ with

 $s = \sup S$.

Recall what these definitions mean.

- **(**) α is an upper bound for *S* means, for each $\beta \in S$, $\beta \leq \alpha$.
- **2** $s = \sup S$ means that s is an upper bound for S, and if α is any upper bound for S then $s \le \alpha$.

The I.u.b. property

Proof of the l.u.b. property of \mathbb{R} .

Define $s = \bigcup_{\beta \in S} \beta$. We first check that s is a cut and $s \leq \alpha$.

- Choose β ∈ S. Then β ⊂ s, so s is non-empty. Let x ∈ s. Then there is β ∈ S such that x ∈ β, and since β ≤ α, x ∈ α. Thus s ⊂ α so s ≠ Q.
- ② Let $p \in s$ and let $q \in \mathbb{Q}$ with q < p. Choose $\beta \in S$ such that $p \in \beta$. Then $q \in \beta$ so $q \in s$.
- Let $p \in s$ and choose $\beta \in S$ such that $p \in \beta$. Then there is r > p with $r \in \beta$. Hence $r \in s$ satisfies r > p.

The verification above shows that *s* is a cut.

イロト 不得下 イヨト イヨト 二日

Proof of the l.u.b. property of \mathbb{R} .

Recall $s = \bigcup_{\beta \in S} \beta$. Note that this implies, for all $\beta \in S$, $\beta \leq s$, so s is an upper bound for S. It remains to check that s is the least upper bound for S. Let α be an

upper bound for *S*. For each $\beta \in S$, $\beta \subset \alpha$. Hence $s = \bigcup_{\beta \in S} \beta \subset \alpha$ which proves $s \leq \alpha$.

Let $x \in \mathbb{R}$, $0 < x \le 1$. The binary decimal representation of x is a sequence $a_1, a_2, a_3, ...$, where each $a_i \in \{0, 1\}$, and represented as $x = 0.a_1a_2a_3a_4...$ The a_i are defined as follows. Define $a_1 = 1$ if $1 \in 2x$, otherwise $a_1 = 0$. In general, define recursively

$$egin{aligned} & x_0 = x \ & orall if \ 1 & ext{if } 1 \in 2x_{i-1} \ & 0 & ext{otherwise} \ & x_i = 2x_{i-1} - a_i. \end{aligned}$$

Recall for $0 < x \le 1$, $x = 0.a_1a_2a_3...$ with

$$egin{aligned} & x_0 = x \ & \forall i \geq 1, \end{aligned} egin{aligned} & a_i = \left\{ egin{aligned} 1 & ext{if } 1 \in 2x_{i-1} \ 0 & ext{otherwise} \end{aligned}
ight. \ & x_i = 2x_{i-1} - a_i. \end{aligned}$$

Examples:

$$\frac{1}{2} = 0.011111111111111...$$
$$\frac{1}{3} = 0.0101010101010101...$$

This construction chooses non-terminating expansions.

Dah	. ப	~	~h	
DOD		υu	21	

Theorem

Let x and y be real numbers satisfying $0 < x \le y \le 1$. The binary representations of x and y are equal if and only if x = y.

Proof.

Suppose x < y.

- One of the exist a pair of rationals p < q such that p, q ∈ y but neither p nor q is in x.</p>
- 2 Choose *n* such that $2^n(q-p) > 2$
- So Find integer $m \ge 1$ such that $p < \frac{m}{2^n} < \frac{m+1}{2^n} < q$
- Perform the binary expansion procedure simultaneously on x, y, z = m/2ⁿ, w = m+1/2ⁿ. Stop at the first step i at which there is a disagreement (i ≤ n)
- Since the first *i* − 1 steps agree, x_{i−1} < z_{i−1} < w_{i−1} < y_{i−1} and hence the *i*th digit of x is 0, whilst the *i*th digit of y is 1.

Theorem

Let $a_1, a_2, a_3, ...$ be a sequence of 0s and 1s, (formally a is a function $a : \{1, 2, 3, ...\} \rightarrow \{0, 1\}$) containing infinitely many 1s. There is a real number $x, 0 < x \le 1$ with $0.a_1a_2a_3...$ as its binary expansion.

Proof.

- Define $S = \{\sum_{i=1}^{n} \frac{a_i}{2^i} : n \in \{1, 2, 3, ...\}\}$. Note $s \leq 1$ for all $s \in S$.
- Define $x = \sup S$ and note $0 < x \le 1$.
- Let $x = 0.b_1b_2b_3...$ and let *i* be the first index with $b_i \neq a_i$.
- Since $x > \sum_{j=1}^{i} \frac{a_j}{2^j}$ (there is an $\ell > i$ with $a_{\ell} = 1$), rule out $b_i = 0$, $a_i = 1$ since $a_i = 1$ implies $2x_{i-1} > 1$.
- If $b_i = 1$, $a_i = 0$, then $x > \sum_{j=1}^{i} \frac{b_j}{2^j}$, but in fact, $\sum_{j=1}^{i} \frac{b_j}{2^j}$ is an upper bound for S, a contradiction (this uses that $\sum_{n=1}^{N} \frac{1}{2^n} < 1$).

Composition of functions

Definition

Let A, B, C be sets, and let $f : A \to B$ and $g : B \to C$ be functions. The composition of f and g is the function $g \circ f : A \to C$ defined at $x \in A$ by

 $g \circ f(x) = g(f(x)).$

Composition of functions

Theorem

Function composition is associative: If A, B, C and D are sets, and $f : A \rightarrow B$, $g : B \rightarrow C$ and $h : C \rightarrow D$ are functions, then

$$h\circ(g\circ f)=(h\circ g)\circ f.$$

Proof.

Let $f : a \mapsto b$, $g : b \mapsto c$, $h : c \mapsto d$, then

$$h \circ (g \circ f) : a \mapsto c \mapsto d, \qquad (h \circ g) \circ f : a \mapsto b \mapsto d.$$

Both combine to $a \mapsto d$.

- 4 同 6 4 日 6 4 日 6

Composition of functions

Examples of composition:

Composition is an operation which is not generally commutative.

3

Properties of composition

Theorem

Let $f : A \rightarrow B$ and $g : B \rightarrow C$ be functions.

- If f and g are both surjective, then $g \circ f$ is surjective.
- If f and g are both injective, then $g \circ f$ is injective.
- If f and g are both bijective, then $g \circ f$ is bijective.

Proof.

- Surjective: Let $z \in C$. Since g is surjective, choose $y \in B$ with g(y) = z. Since f is surjective, choose $x \in A$ satisfying f(x) = y. Then g(f(x)) = z.
- Injective: Suppose that x and y in A satisfy $g \circ f(x) = g \circ f(y)$. Injectivity of g implies f(x) = f(y). Then injectivity of f implies x = y.
- Bijective: Combine surjective and injective.

Inverse functions

Definition

Let $f : A \to B$ be a bijective function. The *inverse function* of f is the function $f^{-1} : B \to A$ defined at $y \in B$ by $f^{-1}(y)$ is the unique x such that f(x) = y.

Note that we already used the notation $f^{-1}(y)$ for the preimage of the point y in the context of a not necessarily bijective function. The notation is used in both ways and must be understood from the context.

Inverse functions

Examples:

- $f(x) = x^2$ is bijective from $\mathbb{R}^+ \to \mathbb{R}^+$ with $f^{-1}(y) = \sqrt{y}$.
- $f(x) = e^x$ is bijective from \mathbb{R} to \mathbb{R}^+ , with inverse $f^{-1}(y) = \log y$
- $f(x) = \tan x$ is bijective from $\{x \in \mathbb{R} : -\frac{\pi}{2} < x < \frac{\pi}{2}\}$ to \mathbb{R} , with inverse $f^{-1}(y) = \tan^{-1}(y)$.

- 3

- 4 週 ト - 4 三 ト - 4 三 ト

Intervals

We use the usual notation regarding intervals. Let a < b be real numbers.

- The open interval $(a, b) = \{x \in \mathbb{R} : a < x < b\}$
- **2** The closed interval $[a, b] = \{x \in \mathbb{R} : a \le x \le b\}$
- The half-open intervals $(a, b] = \{x \in \mathbb{R} : a < x \le b\}$ and $[a, b) = \{x \in \mathbb{R} : a \le x < b\}$
- The open infinite intervals $(a, \infty) = \{x \in \mathbb{R} : x > a\}$ and $(-\infty, a) = \{x \in \mathbb{R} : x < a\}$
- The closed infinite intervals $[a, \infty) = \{x \in \mathbb{R} : x \ge a\}$ and $(-\infty, a] = \{x \in \mathbb{R} : x \le a\}.$
- The real line $(-\infty, \infty) = \mathbb{R}$.

イロト イポト イヨト イヨト 二日

The rationals are countable

Recall that a set S is countable if there is an injective function $f: S \to \mathbb{N}$.

Theorem

The field of rational numbers is countable.

Proof.

- Write each q ∈ Q as q = ^a/_b where a, b ∈ Z, b > 0 and GCD(a, b) = 1. The map f₁ : q → (a, b) is an injective function Q → Z².
- ② Define $p : \mathbb{Z} \to \mathbb{N}$ by p(x) = 2x if $x \ge 0$ and p(x) = -2x 1 if x < 0. This is injective. It follows that $f_2 : \mathbb{Z}^2 \to \mathbb{N}^2$, $f_2(x, y) = (p(x), p(y))$ is injective.
- Given (a, b) ∈ N², set s = a + b and define f₃(a, b) = s(s+1)/2 + b. We claim that f₃ is a bijective map from N² → N. Assuming this, f₃ ∘ f₂ ∘ f₁ : Q → N is an injection.

- 3

・ロン ・四 ・ ・ ヨン ・ ヨン

The rationals are countable

æ

The rationals are countable

Theorem

Given $(a, b) \in \mathbb{N}^2$, define s = a + b. The map $f_3 : \mathbb{N}^2 \to \mathbb{N}$ defined by $f_3(a, b) = \frac{s(s+1)}{2} + b$ is a bijection.

Proof.

Observe that for each $s = 0, 1, 2, ..., f_3$ maps the set $\{(a, b) : a + b = s\}$ bijectively onto $\left\{n \in \mathbb{N} : \frac{s(s+1)}{2} \le n < \frac{(s+1)(s+2)}{2}\right\}$. Since each $n \in \mathbb{N}$ lies in exactly one interval $\frac{s(s+1)}{2} \le n < \frac{(s+1)(s+2)}{2}$, the claim follows.

The pigeonhole principle

Define $[1] = \{1\}$, and, recursively, for $n \ge 1$, $[n+1] = [n] \cup \{n+1\}$. Thus for natural number $n \ge 1$, $[n] = \{1, 2, 3, ..., n\}$.

Theorem

Let $1 \le m < n$ be natural numbers. There does not exist an injective function from [n] to [m].

- 4 同 6 4 日 6 4 日 6

The pigeonhole principle

Proof of the pigeonhole principle.

- This is true for m = 1 for all n > 1 since a map $f : [n] \rightarrow [1]$ satisfies f(2) = f(1) = 1.
- Suppose the statement for some $1 \le m < n$, and suppose there exists an injection from $f : [n+1] \to [m+1]$. If there is $1 \le i < n+1$ with f(i) = m+1, redefine f(i) := f(n+1), f(n+1) := f(i). f is still an injection, and in fact defines an injection $[n] \to [m]$, a contradiction.

The claim now follows from the variant of induction from HW1 #2: the statement proven is that for any pair m, n either $m \ge n$ or there does not exist an injection $[n] \rightarrow [m]$.

- 3

(日) (周) (三) (三)

Pigeonhole examples

Theorem

Let $n \ge 1$ and let $x_1, x_2, ..., x_{n+1}$ be n+1 real numbers from the half-open interval (0, 1]. Prove that there exist $1 \le i < j \le n+1$ with $|x_i - x_j| < \frac{1}{n}$.

Proof.

Form *n* half-open intervals $\{I_i\}_{i=1}^n$, $I_i = \left(\frac{i-1}{n}, \frac{i}{n}\right]$. These intervals are disjoint and their union is (0, 1]. Let $f : [n+1] \rightarrow [n]$ be defined by letting f(i) be the index of the interval that contains x_i . By the pigeonhole principle, f is not an injection, so there exists some $\ell \in [n]$ and some $1 \le i < j \le n+1$ with $f(i) = f(j) = \ell$. It follows that

$$\frac{\ell}{n} < x_i, x_j \le \frac{\ell+1}{n}$$

and thus $|x_i - x_j| < \frac{1}{n}$.

- 3

イロト イポト イヨト イヨト

Pigeonhole examples

Theorem

Given a set $S \subset [100]$ containing at least 51 elements, prove that there are $x, y \in S$ with x + y = 101.

Proof.

Form sets $P_j = \{j, 101 - j\}$ for $1 \le j \le 50$. Define $f : S \to [50]$ by assigning to $s \in S$ the index of the set to which it belongs. By the pigeonhole principle, two elements of S map to the same index, and hence have sum 101.