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The field with 4 elements

Field: A set with 0, 1, and operations +,−,×,÷ such that +,× are
commutative, associative and × distributes over +.
Let F be a field with 4 elements.

Two of them are 0, 1.

Let n ≥ 2 be the least number of times 1 must be added to itself to
reach 0.

n must divide the size of the field, since the field splits into sets of the
form {x , x + 1, ..., x + n − 1} which are disjoint. Hence n = 2 or
n = 4.

If n = 4 then F = {0, 1, 2, 3}, but this forces 2× 2 = 0, whence
2 = 2−1 × 2× 2 = 0, a contradiction, so n = 2.
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The field with 4 elements

Call the two remaining elements of the field x and x + 1. We’ve thus
worked out the addition table of the field

+ 0 1 x x + 1

0 0 1 x x + 1
1 1 0 x + 1 x
x x x + 1 0 1
x + 1 x + 1 x 1 0
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The field with 4 elements

To know the multiplication table we need to know x × x . Since the
product of non-zero elements is non-zero we rule out x2 = 0, x2 = 1
(which forces (x + 1)(x − 1) = (x + 1)2 = 0) and x2 = x (which forces
(x − 1)x = (x + 1)x = 0). Hence x2 = x + 1, so
x(x + 1) = x2 − x = −1 = 1. The multiplication table becomes

× 0 1 x x + 1

0 0 0 0 0
1 0 1 x x + 1
x 0 x x + 1 1
x + 1 0 x + 1 1 x
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The field with 4 elements

From the addition and multiplication table, one could directly verify that F
is an example of a field.
An alternative route:

Let F2 be the field with 2 elements, and verify that F2[x ], that is,
polynomials with F2 coefficients, is a ring.

F4 = F2[x ]/(x2 + x + 1) is the ring which one obtains by setting
multiples of x2 + x + 1 equal to 0 in F2[x ].

The ring properties of F4 follow from those of F2[x ], and the
multiplication table guarantees that multiplicative inverses exist, so F4

is a field.
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Finite fields

For every prime p and for every n ≥ 1 there is exactly one field with
pn elements.

These are all of the finite fields.

This fact is often proven in advanced undergraduate algebra courses.
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Properties of the reals

Last lecture we introduced the reals R as an ordered field containing the
rationals, and satisfying the least upper bound property. Let’s briefly recall
what this means:

Field: A set with 0, 1, and operations +,−,×,÷ such that +,× are
commutative, associative and × distributes over +

Ordered: There exists a set P of positive elements such that 0 6∈ P,
but for all x 6= 0, x or −x is in P. If x , y ∈ P then x + y and xy are
in P.

The least upper bound property: Any set which is non-empty and
bounded above has a least upper bound.
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Properties of the reals

Last lecture we verified that x2 = 2 does not have a solution in Q. We
also checked that in R, if

S = {y ∈ R : 0 < y , y2 < 2}

then x = sup S satisfies x2 = 2. Hence Q 6= R and Q does not satisfy the
least upper bound property.
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Dedekind cuts

(Source: AZ quotes)
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Dedekind cuts

A Dedekind cut is a subset α ⊂ Q satisfying

1 α 6= ∅ and α 6= Q
2 If p ∈ α and q ∈ Q and q < p then q ∈ α
3 If p ∈ α, then p < r for some r ∈ α.

As a set, R consists of the set of cuts of Q.
Define α < β if α ⊂ β but α 6= β.
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Dedekind cuts

Q is identified as a subset of R by identifying q ∈ Q with

q∗ = {p ∈ Q : p < q}.

The additive and multiplicative identities are 0∗ and 1∗.
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Dedekind cuts

Addition is defined as set addition:

α + β = {x + y : x ∈ α, y ∈ β}.

The additive inverse is

−α = {p ∈ Q : ∃r ∈ Q, r > 0,−p − r 6∈ α}

In words, p ∈ −α if there is a rational q > p with −q 6∈ α.
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Dedekind cuts

If α, β > 0 then

α× β = {p × q : p, q > 0, p ∈ α, q ∈ β} ∪ {x ∈ Q : x ≤ 0}.

Multiplication is extended by the usual rules
(−α)× β = (α)× (−β) = −(α× β), (−α)× (−β) = α× β, and
0∗ × α = α× 0∗ = 0∗.
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Dedekind cuts

There is some work to do to verify that these constructions are well
defined and make R an ordered field. For instance, it’s necessary to check
that α + β, α× β, −α, and q∗ are all cuts, and that the constructions
satisfy the field and order axioms.
In lecture we’ll check that R satisfies the trichotomy and least upper
bound properties.
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Trichotomy

Theorem (Trichotomy law for R)

Let α and β be cuts. Exactly one of α < β, α = β or α > β is true.

Proof.

We need to show that at least one of these is true, since at most one is
true by the definition of subset.

Suppose α 6< β and α 6= β. Then α 6⊂ β so choose q ∈ α \ β.

Let r ∈ β. Then r 6= q and r 6> q or else q would be a member of β,
so r < q.

Hence r ∈ α so β ⊂ α and β 6= α, thus β < α.
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The l.u.b. property

Theorem (The l.u.b. property of R)

Let S ⊂ R be a non-empty set of cuts, and suppose that there is α ∈ R
which is an upper bound for S. Then there is s ∈ R with

s = sup S .

Recall what these definitions mean.

1 α is an upper bound for S means, for each β ∈ S , β ≤ α.

2 s = sup S means that s is an upper bound for S , and if α is any
upper bound for S then s ≤ α.
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The l.u.b. property

Proof of the l.u.b. property of R.

Define s =
⋃
β∈S β. We first check that s is a cut and s ≤ α.

1 Choose β ∈ S . Then β ⊂ s, so s is non-empty. Let x ∈ s. Then there
is β ∈ S such that x ∈ β, and since β ≤ α, x ∈ α. Thus s ⊂ α so
s 6= Q.

2 Let p ∈ s and let q ∈ Q with q < p. Choose β ∈ S such that p ∈ β.
Then q ∈ β so q ∈ s.

3 Let p ∈ s and choose β ∈ S such that p ∈ β. Then there is r > p
with r ∈ β. Hence r ∈ s satisfies r > p.

The verification above shows that s is a cut.

Bob Hough Math 141: Lecture 3 September 7, 2016 17 / 44



The l.u.b. property

Proof of the l.u.b. property of R.

Recall s =
⋃
β∈S β. Note that this implies, for all β ∈ S , β ≤ s, so s is an

upper bound for S .
It remains to check that s is the least upper bound for S . Let α be an
upper bound for S . For each β ∈ S , β ⊂ α. Hence s =

⋃
β∈S β ⊂ α which

proves s ≤ α.

Bob Hough Math 141: Lecture 3 September 7, 2016 18 / 44



Binary representation of real numbers

Let x ∈ R, 0 < x ≤ 1. The binary decimal representation of x is a
sequence a1, a2, a3, ..., where each ai ∈ {0, 1}, and represented as
x = 0.a1a2a3a4.... The ai are defined as follows.
Define a1 = 1 if 1 ∈ 2x , otherwise a1 = 0. In general, define recursively

x0 = x

∀i ≥ 1, ai =

{
1 if 1 ∈ 2xi−1
0 otherwise

xi = 2xi−1 − ai .
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Binary representation of real numbers

Recall for 0 < x ≤ 1, x = 0.a1a2a3... with

x0 = x

∀i ≥ 1, ai =

{
1 if 1 ∈ 2xi−1
0 otherwise

xi = 2xi−1 − ai .

Examples:

1

2
= 0.011111111111111...

1

3
= 0.0101010101010101...

This construction chooses non-terminating expansions.
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Binary representation of real numbers

Theorem

Let x and y be real numbers satisfying 0 < x ≤ y ≤ 1. The binary
representations of x and y are equal if and only if x = y.

Proof.

Suppose x < y .

1 There exist a pair of rationals p < q such that p, q ∈ y but neither p
nor q is in x .

2 Choose n such that 2n(q − p) > 2

3 Find integer m ≥ 1 such that p < m
2n <

m+1
2n < q

4 Perform the binary expansion procedure simultaneously on x , y ,
z = m

2n , w = m+1
2n . Stop at the first step i at which there is a

disagreement (i ≤ n)

5 Since the first i − 1 steps agree, xi−1 < zi−1 < wi−1 < yi−1 and
hence the ith digit of x is 0, whilst the ith digit of y is 1.
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Binary representation of real numbers

Theorem

Let a1, a2, a3, ... be a sequence of 0s and 1s, (formally a is a function
a : {1, 2, 3, ...} → {0, 1}) containing infinitely many 1s. There is a real
number x, 0 < x ≤ 1 with 0.a1a2a3... as its binary expansion.

Proof.

Define S = {
∑n

i=1
ai
2i

: n ∈ {1, 2, 3, ...}}. Note s ≤ 1 for all s ∈ S .

Define x = sup S and note 0 < x ≤ 1.

Let x = 0.b1b2b3... and let i be the first index with bi 6= ai .

Since x >
∑i

j=1
aj
2j

(there is an ` > i with a` = 1), rule out bi = 0,
ai = 1 since ai = 1 implies 2xi−1 > 1.

If bi = 1, ai = 0, then x >
∑i

j=1
bj
2j

, but in fact,
∑i

j=1
bj
2j

is an upper

bound for S , a contradiction (this uses that
∑N

n=1
1
2n < 1).
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Composition of functions

Definition

Let A,B,C be sets, and let f : A→ B and g : B → C be functions. The
composition of f and g is the function g ◦ f : A→ C defined at x ∈ A by

g ◦ f (x) = g(f (x)).

Bob Hough Math 141: Lecture 3 September 7, 2016 23 / 44



Composition of functions

Theorem

Function composition is associative: If A,B,C and D are sets, and
f : A→ B, g : B → C and h : C → D are functions, then

h ◦ (g ◦ f ) = (h ◦ g) ◦ f .

Proof.

Let f : a 7→ b, g : b 7→ c , h : c 7→ d , then

h ◦ (g ◦ f ) : a 7→ c 7→ d , (h ◦ g) ◦ f : a 7→ b 7→ d .

Both combine to a 7→ d .
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Composition of functions

Examples of composition:

f : R+ → R+, g : R+ → R+, f (x) = x2, g(x) = 1
x . Then

f ◦ g(x) = g ◦ f (x) = 1
x2
.

f : R→ R, g : R→ R, f (x) = x + 3, g(x) = x2. Then

f ◦ g(x) = x2 + 3, g ◦ f (x) = x2 + 6x + 9.

Composition is an operation which is not generally commutative.
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Properties of composition

Theorem

Let f : A→ B and g : B → C be functions.

If f and g are both surjective, then g ◦ f is surjective.

If f and g are both injective, then g ◦ f is injective.

If f and g are both bijective, then g ◦ f is bijective.

Proof.

Surjective: Let z ∈ C . Since g is surjective, choose y ∈ B with
g(y) = z . Since f is surjective, choose x ∈ A satisfying f (x) = y .
Then g(f (x)) = z .

Injective: Suppose that x and y in A satisfy g ◦ f (x) = g ◦ f (y).
Injectivity of g implies f (x) = f (y). Then injectivity of f implies
x = y .

Bijective: Combine surjective and injective.
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Inverse functions

Definition

Let f : A→ B be a bijective function. The inverse function of f is the
function f −1 : B → A defined at y ∈ B by f −1(y) is the unique x such
that f (x) = y .

Note that we already used the notation f −1(y) for the preimage of the
point y in the context of a not necessarily bijective function. The notation
is used in both ways and must be understood from the context.
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Inverse functions

Examples:

f (x) = x2 is bijective from R+ → R+ with f −1(y) =
√

y .

f (x) = ex is bijective from R to R+, with inverse f −1(y) = log y

f (x) = tan x is bijective from {x ∈ R : −π
2 < x < π

2 } to R, with
inverse f −1(y) = tan−1(y).
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Intervals

We use the usual notation regarding intervals. Let a < b be real numbers.

1 The open interval (a, b) = {x ∈ R : a < x < b}
2 The closed interval [a, b] = {x ∈ R : a ≤ x ≤ b}
3 The half-open intervals (a, b] = {x ∈ R : a < x ≤ b} and

[a, b) = {x ∈ R : a ≤ x < b}
4 The open infinite intervals (a,∞) = {x ∈ R : x > a} and

(−∞, a) = {x ∈ R : x < a}
5 The closed infinite intervals [a,∞) = {x ∈ R : x ≥ a} and

(−∞, a] = {x ∈ R : x ≤ a}.
6 The real line (−∞,∞) = R.
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The rationals are countable

Recall that a set S is countable if there is an injective function f : S → N.

Theorem

The field of rational numbers is countable.

Proof.
1 Write each q ∈ Q as q = a

b where a, b ∈ Z, b > 0 and GCD(a, b) = 1.
The map f1 : q 7→ (a, b) is an injective function Q→ Z2.

2 Define p : Z→ N by p(x) = 2x if x ≥ 0 and p(x) = −2x − 1 if
x < 0. This is injective. It follows that f2 : Z2 → N2,
f2(x , y) = (p(x), p(y)) is injective.

3 Given (a, b) ∈ N2, set s = a + b and define f3(a, b) = s(s+1)
2 + b. We

claim that f3 is a bijective map from N2 → N. Assuming this,
f3 ◦ f2 ◦ f1 : Q→ N is an injection.
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The rationals are countable
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The rationals are countable

Theorem

Given (a, b) ∈ N2, define s = a + b. The map f3 : N2 → N defined by

f3(a, b) = s(s+1)
2 + b is a bijection.

Proof.

Observe that for each s = 0, 1, 2, ..., f3 maps the set {(a, b) : a + b = s}
bijectively onto

{
n ∈ N : s(s+1)

2 ≤ n < (s+1)(s+2)
2

}
. Since each n ∈ N lies

in exactly one interval s(s+1)
2 ≤ n < (s+1)(s+2)

2 , the claim follows.
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The pigeonhole principle

Define [1] = {1}, and, recursively, for n ≥ 1, [n + 1] = [n] ∪ {n + 1}. Thus
for natural number n ≥ 1, [n] = {1, 2, 3, ..., n}.

Theorem

Let 1 ≤ m < n be natural numbers. There does not exist an injective
function from [n] to [m].

Bob Hough Math 141: Lecture 3 September 7, 2016 33 / 44



The pigeonhole principle

Proof of the pigeonhole principle.

This is true for m = 1 for all n > 1 since a map f : [n]→ [1] satisfies
f (2) = f (1) = 1.

Suppose the statement for some 1 ≤ m < n, and suppose there exists
an injection from f : [n + 1]→ [m + 1]. If there is 1 ≤ i < n + 1 with
f (i) = m + 1, redefine f (i) := f (n + 1), f (n + 1) := f (i). f is still an
injection, and in fact defines an injection [n]→ [m], a contradiction.

The claim now follows from the variant of induction from HW1 #2: the
statement proven is that for any pair m, n either m ≥ n or there does not
exist an injection [n]→ [m].
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Pigeonhole examples

Theorem

Let n ≥ 1 and let x1, x2, ..., xn+1 be n + 1 real numbers from the half-open
interval (0, 1]. Prove that there exist 1 ≤ i < j ≤ n + 1 with |xi − xj | < 1

n .

Proof.

Form n half-open intervals {Ii}ni=1, Ii =
(
i−1
n , i

n

]
. These intervals are

disjoint and their union is (0, 1]. Let f : [n + 1]→ [n] be defined by letting
f (i) be the index of the interval that contains xi . By the pigeonhole
principle, f is not an injection, so there exists some ` ∈ [n] and some
1 ≤ i < j ≤ n + 1 with f (i) = f (j) = `. It follows that

`

n
< xi , xj ≤

`+ 1

n

and thus |xi − xj | < 1
n .
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Pigeonhole examples

Theorem

Given a set S ⊂ [100] containing at least 51 elements, prove that there are
x , y ∈ S with x + y = 101.

Proof.

Form sets Pj = {j , 101− j} for 1 ≤ j ≤ 50. Define f : S → [50] by
assigning to s ∈ S the index of the set to which it belongs. By the
pigeonhole principle, two elements of S map to the same index, and hence
have sum 101.

Bob Hough Math 141: Lecture 3 September 7, 2016 36 / 44


