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Fejér's kernel

Definition
Let N > 1. The function

2 - 17, 2
K(x) = Dn(x)> 1 sin27(N + 5)x
MY =oONT1T 2N+ 1 sin

is called Fejér’s kernel. It has Fourier coefficients

2N-+1—|n|
Ry(my={ 2w Inl<2n
0 otherwise
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Fejér's kernel

Theorem

Fejér's kernel satisfies the following properties.
Q@ Kn(x) >0

Q fol Kn(x)dx =1
© For each fixed § > 0, limy_so0 f5° Kn(x)dx = 0.

These properties make Ky(x) a ‘summability kernel'.
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Convergence in L!

Theorem

Let f be integrable on [0,1]. Then for any N > 1,

1 1
/Olf*KN(xndxs/O 00 ldx.

The quantity ||f]j1 = fol |f(x)|dx is called the L' norm of the function f.
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Convergence in L!

Proof.
By positivity of Ky,

1 1 1
/ |f*KN(X)|dX:/ / f(t)Kn(x — t)dt| dx
0 0 0
1 1
g/ / |F(£)| Kiy(x — £)dtclx
0
2N
2N +1 - nl 2min(x—t)
Y S / / I(£)]e dtdx
n=—2N
2N
2N+1_n| 21n></ 2mint
> i | (t)|e= 2™t dtdx
ety 2N +1

The inner integral over t is a constant which depends on n but not x.

Treating this as fixed we may integrate in x to eliminate all but n =0,

which leaves [5 |f  Kn(x)|dx < [ |f(t)|dt. O
e



Convergence in L!

Theorem

Let f be integrable on [0,1]. Then

[im

1
/ |f(x) — f * Kn(x)|dx = 0.
N—o0 0
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Convergence in L!

Proof.
Given € > 0, choose continuous f; such that fol [f(x) — fi(x)|dx < %.

Choose N sufficiently large so that |f1(x) — fi * Kny(x)| < §, uniformly in
x. Then
1
/ |f(x) — f * Ky(x)|dx
0
1
= / I(f = A)(x) + (A — fox Kn)(x) + ((A = £) = Kn)(x)|dx
0
1 1
< [ 16F = B0l + [ 106~ i+ Kn)(o)lax
0 0
1
+/ |f — f] * Kn(x)dx
0

<i4o4i=c
373737 ¢
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Equidistribution modulo 1

Definition

A sequence of real numbers {a,}° ; is said to equidistribute modulo 1 if
for each interval [o, 3) C [0,1),

,Jinoo#{ngN:anEodle[a,ﬁ)} —f—a

The distribution of real numbers modulo 1 and related questions plays an
important role in several areas of modern analysis, including analytic

number theory, probability, partial differential equations, and quantum
mechanics.
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Weyl's criterion

Our discussion of Fourier series permits us to prove the following famous
condition of Hermann Weyl regarding equidistribution modulo 1.

Theorem (Weyl's criterion for equidistribution modulo 1)

The sequence {a,}° ; is equidistributed modulo 1 if and only if, for each
integer m # 0,
N
li 2miman _
Ninoo Z

=1
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Hermann Weyl
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Weyl's criterion

Proof.

First suppose that {a,}%°; is equidistributed modulo 1. After removing
the integer part, assume that 0 < a,, < 1 for each n.

2mwimx

@ Given € > 0, approximate the function e with a step function

M
s(x) = Z kLo 50 (%)
k=1

such that for each x € [0,1), |s(x) — €>™™| < e.
@ Let N be sufficiently large so that, for each k =1,2,..., M,

#{n <N:a,e€ [Otk,,@k)} -
N

€

< —.
M
Zk:l |k

(B — a)
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Weyl's criterion

Proof.
o Calculate
1 N
2mwiman
Noe Set
n=1
=€+
< 2e+

o Notice that Zk 1 Sk(Bk — o) =

1 N
N ;5(‘%)

M

#{n < N : a, € [ak, Bk)}

ch N

k=1
M
> k(B — ax)

k=1

Jo s

x)dx, and

1 2mimx — 27mima
‘fo s(x) dx’ﬁ‘foe dx| + e =e. Hence | SN | e?miman| < 3¢,
Ol
v
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Weyl's criterion

Proof.
Now suppose that Weyl's criterion is satisfied, that is, for each fixed
integer m # 0,

lim _§ : 27rlma,,:
N—oo N

Given an interval [, 3) C [0,1), let f, 3 be the function

[ 1 xmodle][a,p)
"B(X)_{O xmod1l¢[a,B) °

Thus

#{n<N:a, zod 1€ [a,p)} i o(an).
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Weyl's criterion

Proof.
We claim that, for each € > 0 there exist minorant and majorant
trigonometric polynomials m(x) = Zf:_K @@ ]
M.(x) = Z,}f:_K Cie®™ > which take real values, and satisfy
@ For each x € [0,1),

Me(x) < fa5(x) < Me(x).

1 1
€ +/ me(x)dx =€+ cg > Cp = / Me(x)dx.
0 0
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Weyl's criterion
Proof.

Assuming the existence of the minorant and majorant, Weyl's proof is
concluded as follows. For each N,

N

N
%Zme(a,, < Z ’5(an)<—ZM ap).

=1

Expand the left hand side as

1 N K . K N
NZ Z Cke27rlka,, _ Z <NZ 7r/l<a,,> _ Co—I-O(].)

n=1 k=—K k=—K

as N — oco. Similarly, the right hand side is Gy + o(1) as N — oo. Since
o < B —a< G and G and ¢ differ by at most ¢, letting € | 0 it follows

that limpy_eo % Z,’)’Zl fo5(an) = B — « as required.
L]
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Majorant and minorant

Theorem

Let 0 < oo < B < 1. For each € > 0 there exist real trigonometric
polynomials m.(x) = Z,’Y:_N cn€?™™ and M(x) = Z,IY:_N C,e%minx
satisfying

o me(x) < fo5(x) < Mc(x)

e ¢ +e> (.
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Majorant and minorant

Proof.

First, choose real continuous functions g and h which are 1-periodic, such
that g(x) < f, g(x) < h(x) and

g + /01 g(x)dx > /01 h(x)dx.

Choose N sufficiently large so that uniformly in x, [g(x) — g * Kn(x)| < €
and |h(x) — h* Ky(x)| < §. Set

me(x) = —g tgxKu(x),  M(x)= g + hx Ky(x).
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Majorant and minorant

Proof.

Recall

me(x) = —% + g * Ky(x), Mc(x) = g + h*x Ky(x).

These are real trigonometric polynomials, since the Fejér kernel is real, and
satisfy me(x) < g(x) < fa g(x) < h(x) < Mc(x) for all x. Also,

/01 Me(x)dx — /01 me(x)dx < % + /01 h(x) — g(x)dx < .
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Equidistribution modulo 1

Theorem

Let o € R be a real number. The sequence {an}° ; is equidistributed
modulo 1 if and only if « is irrational.
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Equidistribution modulo 1

Proof.

If a = g is rational, then choosing m = q in Weyl's criterion obtains

for all N. Hence the sequence fails to be equidistributed modulo 1.
Now suppose that « is irrational. For each m # 0,

N . .
1 el 1 e2mima _ e27rlm(N+1)a _ 2 1
Nze - N 1 — e2mima —N|1_e2ﬂ'ima|'
n=1
Since this tends to 0 as N — oo the sequence is asymptotically
equidistributed by Weyl's criterion. [
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Finite differencing

Theorem

The sequence {n®}2°

n=1
non-negative integer.

is a sequence of integers if and only if o is a

o & = E DA
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Finite differencing

Proof.
@ The integrality in the case « is a non-negative integer is obvious.
@ If o < 0 then n® decreases to 0, so is not a sequence of integers.

@ Define the finite difference operator on sequences by
Aa, = apy1 — ap.

Let m > 0 satisfy m < o < m+ 1. Consider the sequence

{bn _ Am—l—l(na) [e's)

n=1-

If {n“}7°, is a sequence of integers, then so is {b,}°2 ;, so it suffices
to show that this is not the case.

O]

v
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Finite differencing
Proof.

o Given f(x) = x”, use Taylor's formula with remainder to write, for
any n>1 and x > 0,

e 1) = 10 =80 4 (5024t (D)0

+ (5) (B—n) /01(1 —t)"(x + t)P~"" Lt

As x — 0o, the error integral is O(x#~"71).
o lterating this formula m + 1 times, we find that, as n — oo,

by = (a)(a—1)--- (a — m)n®*~™1 L O(n*~m2).

@ Since m < a < m+ 1, for n sufficiently large 0 < b, < 1.
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Finite differencing

In fact, using differencing methods and Weyl's criterion it is possible to

show that the sequence {n®}9°; becomes equidistributed modulo 1 if « is
a positive non-integer real number.
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Generating functions

Problem

When two standard dice are rolled, the probability distribution of the sum
is distributed like the Fejér kernel:

6—|7—n|
=—1 1 2<n<12.
p(n) 36 Y —n—

Find two six-sided dice A and B with positive numbers other than 1-6,
which, when rolled, give the same probability distribution for the sum.
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Generating functions

Solution

Represent the two standard dice with the polynomial generating function
x + x% 4+ x3 + x* + x5 + x8, where the coefficient on x' represents the
number of faces numbered i. Hence the counts for outcomes when the
two dice are rolled is represented by

(x + X2 + x3 4 x* + x5 4 x5)?2
= x%2 4+ 2x3 +3x* +4x> +5x0 + 6x7 + 5x8 + 4x% + 3x10 4+ 251 4 12,

Factor

X+ X%+ 3+ X+ x° 4 x0 =x(1+ x)(1 + x+ x°)(1 — x + x°).
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Generating functions

Solution

Since the dice are six sided, the coefficients should be non-negative and
sum to 6. This fixes the value of the generating function at x = 1. Thus
each die must contain a factor of (1 + x) and (1 + x + x?). To make all
the numbers positive, each die must contain a factor of x. The only
possibility is (up to exchanging their order),

AX) =x(14+x) 1+ x+x3)(1 —x+x3)2 = x4+ x>+ x* + x5 + x® + %8,
B(x) = x(1 4+ x)(1 + x + x?) = x 4+ 2x% +2x3 + x*.

Thus, one die has numbers 1,3,4,5,6,8 and the other has 1,2,2,3,3,4.

Bob Hough Math 141: Lecture 24 December 7, 2016 27 / 27



