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Fejér’s kernel

Definition

Let N ≥ 1. The function

KN(x) =
DN(x)2

2N + 1
=

1

2N + 1

(
sin 2π(N + 1

2)x

sinπx

)2

is called Fejér’s kernel. It has Fourier coefficients

K̂N(n) =

{
2N+1−|n|
2N+1 |n| ≤ 2N

0 otherwise
.
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Fejér’s kernel

Theorem

Fejér’s kernel satisfies the following properties.

1 KN(x) ≥ 0

2
∫ 1
0 KN(x)dx = 1

3 For each fixed δ > 0, limN→∞
∫ 1−δ
δ KN(x)dx = 0.

These properties make KN(x) a ‘summability kernel’.
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Convergence in L1

Theorem

Let f be integrable on [0, 1]. Then for any N ≥ 1,∫ 1

0
|f ∗ KN(x)|dx ≤

∫ 1

0
|f (x)|dx .

The quantity ‖f ‖1 =
∫ 1
0 |f (x)|dx is called the L1 norm of the function f .
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Convergence in L1

Proof.

By positivity of KN ,∫ 1

0
|f ∗ KN(x)|dx =

∫ 1

0

∣∣∣∣∫ 1

0
f (t)KN(x − t)dt

∣∣∣∣ dx

≤
∫ 1

0

∫ 1

0
|f (t)|KN(x − t)dtdx

=
2N∑

n=−2N

2N + 1− |n|
2N + 1

∫ 1

0

∫ 1

0
|f (t)|e2πin(x−t)dtdx

=
2N∑

n=−2N

2N + 1− |n|
2N + 1

∫ 1

0
e2πinx

∫ 1

0
|f (t)|e−2πintdtdx

The inner integral over t is a constant which depends on n but not x .
Treating this as fixed we may integrate in x to eliminate all but n = 0,
which leaves

∫ 1
0 |f ∗ KN(x)|dx ≤

∫ 1
0 |f (t)|dt.
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Convergence in L1

Theorem

Let f be integrable on [0, 1]. Then

lim
N→∞

∫ 1

0
|f (x)− f ∗ KN(x)|dx = 0.
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Convergence in L1

Proof.

Given ε > 0, choose continuous f1 such that
∫ 1
0 |f (x)− f1(x)|dx < ε

3 .
Choose N sufficiently large so that |f1(x)− f1 ∗ KN(x)| < ε

3 , uniformly in
x . Then∫ 1

0
|f (x)− f ∗ KN(x)|dx

=

∫ 1

0
|(f − f1)(x) + (f1 − f1 ∗ KN)(x) + ((f1 − f ) ∗ KN)(x)|dx

≤
∫ 1

0
|(f − f1)(x)|dx +

∫ 1

0
|(f1 − f1 ∗ KN)(x)|dx

+

∫ 1

0
|f − f1| ∗ KN(x)dx

<
ε

3
+
ε

3
+
ε

3
= ε.
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Equidistribution modulo 1

Definition

A sequence of real numbers {an}∞n=1 is said to equidistribute modulo 1 if
for each interval [α, β) ⊂ [0, 1),

lim
N→∞

#{n ≤ N : an mod 1 ∈ [α, β)}
N

= β − α.

The distribution of real numbers modulo 1 and related questions plays an
important role in several areas of modern analysis, including analytic
number theory, probability, partial differential equations, and quantum
mechanics.
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Weyl’s criterion

Our discussion of Fourier series permits us to prove the following famous
condition of Hermann Weyl regarding equidistribution modulo 1.

Theorem (Weyl’s criterion for equidistribution modulo 1)

The sequence {an}∞n=1 is equidistributed modulo 1 if and only if, for each
integer m 6= 0,

lim
N→∞

1

N

N∑
n=1

e2πiman = 0.

Bob Hough Math 141: Lecture 24 December 7, 2016 9 / 27



Hermann Weyl
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Weyl’s criterion

Proof.

First suppose that {an}∞n=1 is equidistributed modulo 1. After removing
the integer part, assume that 0 ≤ an < 1 for each n.

Given ε > 0, approximate the function e2πimx with a step function

s(x) =
M∑
k=1

ck1[αk ,βk )(x)

such that for each x ∈ [0, 1), |s(x)− e2πimx | < ε.

Let N be sufficiently large so that, for each k = 1, 2, ...,M,∣∣∣∣#{n ≤ N : an ∈ [αk , βk)}
N

− (βk − αk)

∣∣∣∣ < ε∑M
k=1 |ck |

.
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Weyl’s criterion

Proof.

Calculate∣∣∣∣∣ 1

N

N∑
n=1

e2πiman

∣∣∣∣∣ ≤ ε+

∣∣∣∣∣ 1

N

N∑
n=1

s(an)

∣∣∣∣∣
= ε+

∣∣∣∣∣
M∑
k=1

ck
#{n ≤ N : an ∈ [αk , βk)}

N

∣∣∣∣∣
< 2ε+

∣∣∣∣∣
M∑
k=1

ck(βk − αk)

∣∣∣∣∣
Notice that

∑M
k=1 ck(βk − αk) =

∫ 1
0 s(x)dx , and∣∣∣∫ 1

0 s(x)dx
∣∣∣ ≤ ∣∣∣∫ 1

0 e2πimxdx
∣∣∣+ ε = ε. Hence

∣∣∣ 1N ∑N
n=1 e2πiman

∣∣∣ < 3ε.
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Weyl’s criterion

Proof.

Now suppose that Weyl’s criterion is satisfied, that is, for each fixed
integer m 6= 0,

lim
N→∞

1

N

N∑
n=1

e2πiman = 0.

Given an interval [α, β) ⊂ [0, 1), let fα,β be the function

fα,β(x) =

{
1 x mod 1 ∈ [α, β)
0 x mod 1 6∈ [α, β)

.

Thus

#{n ≤ N : an mod 1 ∈ [α, β)}
N

=
1

N

N∑
n=1

fα,β(an).
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Weyl’s criterion

Proof.

We claim that, for each ε > 0 there exist minorant and majorant
trigonometric polynomials mε(x) =

∑K
k=−K cke2πikx and

Mε(x) =
∑K

k=−K Cke2πikx which take real values, and satisfy

For each x ∈ [0, 1),

mε(x) ≤ fα,β(x) ≤ Mε(x).

ε+

∫ 1

0
mε(x)dx = ε+ c0 > C0 =

∫ 1

0
Mε(x)dx .
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Weyl’s criterion

Proof.

Assuming the existence of the minorant and majorant, Weyl’s proof is
concluded as follows. For each N,

1

N

N∑
n=1

mε(an) ≤ 1

N

N∑
n=1

fα,β(an) ≤ 1

N

N∑
n=1

Mε(an).

Expand the left hand side as

1

N

N∑
n=1

K∑
k=−K

cke2πikan =
K∑

k=−K
ck

(
1

N

N∑
n=1

e2πikan

)
= c0 + o(1)

as N →∞. Similarly, the right hand side is C0 + o(1) as N →∞. Since
c0 ≤ β − α ≤ C0 and C0 and c0 differ by at most ε, letting ε ↓ 0 it follows
that limN→∞

1
N

∑N
n=1 fα,β(an) = β − α as required.

Bob Hough Math 141: Lecture 24 December 7, 2016 15 / 27



Majorant and minorant

Theorem

Let 0 ≤ α < β < 1. For each ε > 0 there exist real trigonometric
polynomials mε(x) =

∑N
n=−N cne2πinx and Mε(x) =

∑N
n=−N Cne2πinx

satisfying

mε(x) ≤ fα,β(x) ≤ Mε(x)

c0 + ε > C0.
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Majorant and minorant

Proof.

First, choose real continuous functions g and h which are 1-periodic, such
that g(x) ≤ fα,β(x) ≤ h(x) and

ε

5
+

∫ 1

0
g(x)dx >

∫ 1

0
h(x)dx .

Choose N sufficiently large so that uniformly in x , |g(x)− g ∗ KN(x)| < ε
5

and |h(x)− h ∗ KN(x)| < ε
5 . Set

mε(x) = − ε
5

+ g ∗ KN(x), Mε(x) =
ε

5
+ h ∗ KN(x).
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Majorant and minorant

Proof.

Recall

mε(x) = − ε
5

+ g ∗ KN(x), Mε(x) =
ε

5
+ h ∗ KN(x).

These are real trigonometric polynomials, since the Fejér kernel is real, and
satisfy mε(x) ≤ g(x) ≤ fα,β(x) ≤ h(x) ≤ Mε(x) for all x . Also,∫ 1

0
Mε(x)dx −

∫ 1

0
mε(x)dx <

4ε

5
+

∫ 1

0
h(x)− g(x)dx < ε.
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Equidistribution modulo 1

Theorem

Let α ∈ R be a real number. The sequence {αn}∞n=1 is equidistributed
modulo 1 if and only if α is irrational.
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Equidistribution modulo 1

Proof.

If α = p
q is rational, then choosing m = q in Weyl’s criterion obtains

1

N

N∑
n=1

e2πiqnα =
1

N

N∑
n=1

e2πinp = 1

for all N. Hence the sequence fails to be equidistributed modulo 1.
Now suppose that α is irrational. For each m 6= 0,∣∣∣∣∣ 1

N

N∑
n=1

e2πimnα

∣∣∣∣∣ =

∣∣∣∣∣ 1

N

e2πimα − e2πim(N+1)α

1− e2πimα

∣∣∣∣∣ ≤ 2

N

1

|1− e2πimα|
.

Since this tends to 0 as N →∞ the sequence is asymptotically
equidistributed by Weyl’s criterion.
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Finite differencing

Theorem

The sequence {nα}∞n=1 is a sequence of integers if and only if α is a
non-negative integer.
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Finite differencing

Proof.

The integrality in the case α is a non-negative integer is obvious.

If α < 0 then nα decreases to 0, so is not a sequence of integers.

Define the finite difference operator on sequences by
∆an = an+1 − an.

Let m ≥ 0 satisfy m < α < m + 1. Consider the sequence

{bn = ∆m+1(nα)}∞n=1.

If {nα}∞n=1 is a sequence of integers, then so is {bn}∞n=1, so it suffices
to show that this is not the case.
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Finite differencing

Proof.

Given f (x) = xβ, use Taylor’s formula with remainder to write, for
any n ≥ 1 and x ≥ 0,

f (x + 1)− f (x) =βxβ−1 +

(
β

2

)
xβ−2 + ...+

(
β

n

)
xβ−n

+

(
β

n

)
(β − n)

∫ 1

0
(1− t)n(x + t)β−n−1dt.

As x →∞, the error integral is O(xβ−n−1).

Iterating this formula m + 1 times, we find that, as n→∞,

bn = (α)(α− 1) · · · (α−m)nα−m−1 + O(nα−m−2).

Since m < α < m + 1, for n sufficiently large 0 < bn < 1.
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Finite differencing

In fact, using differencing methods and Weyl’s criterion it is possible to
show that the sequence {nα}∞n=1 becomes equidistributed modulo 1 if α is
a positive non-integer real number.
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Generating functions

Problem

When two standard dice are rolled, the probability distribution of the sum
is distributed like the Fejér kernel:

p(n) =
6− |7− n|

36
, 2 ≤ n ≤ 12.

Find two six-sided dice A and B with positive numbers other than 1–6,
which, when rolled, give the same probability distribution for the sum.
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Generating functions

Solution

Represent the two standard dice with the polynomial generating function
x + x2 + x3 + x4 + x5 + x6, where the coefficient on x i represents the
number of faces numbered i . Hence the counts for outcomes when the
two dice are rolled is represented by

(x + x2 + x3 + x4 + x5 + x6)2

= x2 + 2x3 + 3x4 + 4x5 + 5x6 + 6x7 + 5x8 + 4x9 + 3x10 + 2x11 + x12.

Factor

x + x2 + x3 + x4 + x5 + x6 = x(1 + x)(1 + x + x2)(1− x + x2).
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Generating functions

Solution

Since the dice are six sided, the coefficients should be non-negative and
sum to 6. This fixes the value of the generating function at x = 1. Thus
each die must contain a factor of (1 + x) and (1 + x + x2). To make all
the numbers positive, each die must contain a factor of x. The only
possibility is (up to exchanging their order),

A(x) = x(1 + x)(1 + x + x2)(1− x + x2)2 = x + x3 + x4 + x5 + x6 + x8,

B(x) = x(1 + x)(1 + x + x2) = x + 2x2 + 2x3 + x4.

Thus, one die has numbers 1, 3, 4, 5, 6, 8 and the other has 1, 2, 2, 3, 3, 4.
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