# Math 141: Lecture 21 Power series and applications

Bob Hough

November 28, 2016

Bob Hough

Math 141: Lecture 21

November 28, 2016 1 / 29

# Continuity of power series

#### Theorem

Suppose  $\sum_{n=0}^{\infty} a_n$  converges, and define

$$f(x) = \sum_{n=0}^{\infty} a_n x^n, \qquad -1 < x < 1.$$

Then  $\lim_{x\to 1} f(x) = \sum_{n=0}^{\infty} a_n$ .

| <b>D</b> |    |      |
|----------|----|------|
| Roh      | HO | urah |
|          |    | uen  |
|          |    |      |

### Continuity of power series

#### Proof.

Let  $s_{-1} = 0$ ,  $s_n = \sum_{k=0}^n a_k$  and  $s = \sum_{k=0}^\infty a_k$ . By Abel summation,

$$\sum_{n=0}^{m} a_n x^n = \sum_{n=0}^{m} (s_n - s_{n-1}) x^n = (1-x) \sum_{n=0}^{m-1} s_n x^n + s_m x^m.$$

For |x| < 1, letting  $m \to \infty$  obtains

$$f(x) = (1-x)\sum_{n=0}^{\infty} s_n x^n = s + (1-x)\sum_{n=0}^{\infty} (s_n - s) x^n.$$

▲ロト ▲圖ト ▲画ト ▲画ト 三直 - のへで

# Continuity of power series

#### Proof.

Given  $\epsilon > 0$ , choose N such that n > N implies  $|s_n - s| < \epsilon$ . Then

$$\sum_{n=0}^{\infty} |s_n - s| |x|^n \le \sum_{n=0}^{N} |s_n - s| + \epsilon \frac{|x|^{N+1}}{1 - |x|}.$$

Thus,

$$|f(x) - s| \le |1 - x| \sum_{n=0}^{N} |s_n - s| + \epsilon.$$

For x sufficiently close to 1, this is bounded by  $2\epsilon$ . Letting  $\epsilon \downarrow 0$  proves  $\lim_{x\to 1} f(x) = s$ .

- 4 同 ト 4 ヨ ト 4 ヨ

- Recall that, by the alternating series test, the series  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n}$  converges. We can now evaluate its value.
- For |x| < 1,  $f(x) = \frac{1}{1+x} = 1 x + x^2 x^3 + ...$  Hence, integrating,

$$\log(1+x) = \sum_{n=1}^{\infty} \frac{(-1)^{n+1} x^n}{n}$$

• Letting  $x \to 1$  obtains  $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} = \log 2$ .

イロト イポト イヨト イヨト 二日

#### Theorem

Given a double sequence  $\{a_{i,j}\}_{i,j=1}^{\infty}$  of non-negative terms, suppose that  $\sum_{i=1}^{\infty} a_{i,j} = b_i$  and  $\sum_{i=1}^{\infty} b_i$  converges. Then

$$\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}a_{i,j}=\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}a_{i,j}.$$

- 3

・ 同 ト ・ 三 ト ・ 三 ト

#### Proof.

Note that, for each j,  $\sum_{i} a_{i,j}$  converges by comparison with  $\sum_{i} b_{i}$ . Furthermore, by the finite linearity property of convergent series,

$$\sum_{j=1}^M \sum_i^\infty \mathsf{a}_{i,j} = \sum_{i=1}^\infty \sum_{j=1}^M \mathsf{a}_{i,j} \le \sum_{i=1}^\infty \sum_{j=1}^\infty \mathsf{a}_{i,j}.$$

Since  $\sum_{j=1}^{M} \sum_{i=1}^{\infty} a_{i,j}$  is increasing as a function of M and bounded above, it converges. The equality now follows by symmetry.

#### Theorem

Given a double sequence  $\{a_{i,j}\}_{i,j=1}^{\infty}$ , suppose that  $\sum_{j=1}^{\infty} |a_{i,j}| = b_i$  and  $\sum_{i=1}^{\infty} b_i$  converges. Then

$$\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}a_{i,j}=\sum_{j=1}^{\infty}\sum_{i=1}^{\infty}a_{i,j}.$$

- 3

くほと くほと くほと

#### Proof.

Separate  $a_{i,j}$  into its positive and negative parts. For these, the equality follows from the previous result. The claimed result now follows from finite linearity.

# Change of base point

#### Theorem

Suppose

$$f(x)=\sum_{n=0}^{\infty}c_nx^n,$$

the series converging in |x| < R. If -R < a < R, then f can be expanded in a power series about the point x = a, which converges in |x - a| < R - |a|, and for |x - a| < R - |a|,

$$f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(a)}{n!} (x-a)^n,$$

and  $f^{(n)}(a) = \sum_{m=n}^{\infty} \frac{m!}{(m-n)!} c_m a^{m-n}$ .

イロト 不得下 イヨト イヨト 二日

# Change of base point

#### Proof.

The formula for f(x) is a general fact regarding power series. To prove the convergence, write

$$f(x) = \sum_{n=0}^{\infty} c_n [(x-a) + a]^n$$
  
= 
$$\sum_{n=0}^{\infty} c_n \sum_{k=0}^n {n \choose k} a^{n-k} (x-a)^k$$
  
= 
$$\sum_{k=0}^{\infty} \left[ \sum_{n=k}^{\infty} {n \choose k} c_n a^{n-k} \right] (x-a)^k.$$

The formula for  $f^{(n)}(a)$  is obtained by equating coefficients of  $(x-a)^n$ .

# Change of base point

### Proof.

The exchange in order of summation in the previous slide is justified, since

$$\sum_{n=0}^{\infty} \sum_{k=0}^{n} \left| c_n \binom{n}{k} a^{n-k} (x-a)^k \right| \le \sum_{n=0}^{\infty} |c_n| (|x-a|+|a|)^n$$

converges absolutely for |x - a| + |a| < R.

The exponential function may be rewritten as

$$E(x) = \sum_{n=0}^{\infty} \frac{x^n}{n!}$$
  
=  $\sum_{n=0}^{\infty} \left[ \sum_{k=n}^{\infty} {k \choose n} \frac{a^{k-n}}{k!} \right] (x-a)^n$   
=  $\sum_{n=0}^{\infty} \left[ \frac{1}{n!} \sum_{j=0}^{\infty} \frac{a^j}{j!} \right] (x-a)^n$   
=  $E(a) \sum_{n=0}^{\infty} \frac{(x-a)^n}{n!} = E(a)E(x-a).$ 

This gives an alternate route to prove the multiplication formula.

(日) (同) (三) (三)

# The logarithm

Define, for |z| < 1,

$$L(1+z) = \sum_{n=1}^{\infty} (-1)^{n-1} \frac{z^n}{n}.$$

#### Theorem

For complex z such that |z| < 1,

$$E(L(1+z))=1+z.$$

Bob Hough

3

(日) (同) (三) (三)

# The logarithm

Proof.

- The equality holds for real z, since  $L(1 + x) = \log(1 + x)$  follows by integrating the power series for  $\frac{1}{1+x}$ .
- We check that E(L(1 + z)) is given by a power series in |z| < 1, from which the equality for complex z follows.
- Define  $E_N(x) = \sum_{n=0}^{N} \frac{x^n}{n!}$ . For each fixed N,

$$E_N(L(1+z)) = \sum_{n=0}^N \frac{L(1+z)^n}{n!}$$
  
=  $\sum_{n=0}^N \frac{1}{n!} \left( \sum_{k=1}^\infty \frac{(-1)^{k-1} z^k}{k} \right)^n = \sum_{n=0}^N \frac{1}{n!} \left( \sum_{k=0}^\infty b_{k,n} z^k \right)$ 

is a power series in z, obtained by taking the Cauchy product, which is justified by absolute convergence.

# The logarithm

#### Proof.

• One has absolute convergence in the sum,

$$\sum_{n=0}^{\infty} \frac{1}{n!} \left( \sum_{k=1}^{\infty} b_{k,n} z^k \right) = \sum_{k=0}^{\infty} z^k \left( \sum_{n=0}^{\infty} \frac{b_{k,n}}{n!} \right)$$

by comparison with the series for

$$E(-L(1-|z|)) = \sum_{n=0}^{\infty} \frac{1}{n!} \left( \sum_{k=1}^{\infty} \frac{|z|^k}{k} \right)^n = \frac{1}{1-|z|}$$

which is a series of only positive terms.

< 🗗 🕨

### Power series and differential equations

#### Problem

Solve the non-linear ODE  $(1 - x^2)y'' = -2y$ .

### Solution

- Guess a solution of type  $y = \sum_{n=0}^{\infty} a_n x^n$  with a positive radius of convergence about 0.
- Differentiating term-by-term

$$y''=\sum_{n=2}^{\infty}n(n-1)a_nx^{n-2}.$$

| _    |     |     |
|------|-----|-----|
| 20   |     | ~b  |
| 1303 | OLL | 211 |
|      | _   | _   |

A B A A B A

# Power series and differential equations

### Solution

• Thus

$$(1 - x^{2})y'' = \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n-2} - \sum_{n=2}^{\infty} n(n-1)a_{n}x^{n}$$
$$= \sum_{n=0}^{\infty} (n+2)(n+1)a_{n+2}x^{n} - \sum_{n=0}^{\infty} n(n-1)a_{n}x^{n}$$
$$= \sum_{n=0}^{\infty} [(n+2)(n+1)a_{n+2} - n(n-1)a_{n}]x^{n}$$

• Equating coefficients  $(n+2)(n+1)a_{n+2} - n(n-1)a_n = -2a_n$ , or

$$a_{n+2} = \frac{n^2 - n - 2}{(n+2)(n+1)}a_n = \frac{n-2}{n+2}a_n.$$

3

イロト イポト イヨト イヨト

# Power series and differential equations

### Solution

• Since  $a_{n+2} = \frac{n-2}{n+2}a_n$ , the even coefficients are given by

$$a_2 = -a_0, \quad a_4 = a_6 = a_8 = \dots = 0.$$

• The odd coefficients are given by, for  $n \ge 0$ ,

$$a_{2n+1} = rac{-1}{(2n+1)(2n-1)}a_1.$$

• Hence the full solution is given by

$$y = a_0(1-x^2) - a_1 \sum_{n=0}^{\infty} \frac{1}{(2n+1)(2n-1)} x^{2n+1}.$$

This convergences for |x| < 1, hence is a genuine solution.

### The binomial series

#### Theorem

Define the generalized binomial coefficient

$$\binom{\alpha}{n} = \frac{\alpha(\alpha-1)\cdots(\alpha-n+1)}{n!}$$

For any real  $\alpha$ ,

$$(1+x)^{\alpha} = \sum_{n=0}^{\infty} {\alpha \choose n} x^n, \qquad |x| < 1.$$

| Poh | Hoursh |
|-----|--------|
| DOD | Tiougn |

3

(日) (同) (三) (三)

# The binomial series

#### Proof.

- The function  $y = (1 + x)^{\alpha}$  satisfies  $y' \frac{\alpha}{1+x}y = 0$  with initial condition y(0) = 1, and is the unique solution.
- Define

$$f(x) = \sum_{n=0}^{\infty} \binom{\alpha}{n} x^n.$$

• The generalized binomial coefficient satisfies

$$\binom{\alpha}{n+1} = \frac{\alpha - n}{n+1} \binom{\alpha}{n},$$

and thus f(x) converges in |x| < 1 by the ratio test.

- 4 同 6 4 日 6 4 日 6

# The binomial series

### Proof.

• Differentiating term-by-term

$$f'(x) = \sum_{n=0}^{\infty} (n+1) \binom{\alpha}{n+1} x^n.$$

Thus

$$(1+x)f'(x) = \sum_{n=0}^{\infty} \left\{ (n+1)\binom{\alpha}{n+1} + n\binom{\alpha}{n} \right\} x^n$$
$$= \alpha \sum_{n=0}^{\infty} \binom{\alpha}{n} x^n = \alpha f(x).$$

• Also, f(0) = 1 so  $f(x) = (1 + x)^{\alpha}$ .

э

・ロト ・聞ト ・ヨト ・ヨト

# Differentiation of integrals

#### Theorem

Suppose  $\phi(x, t)$  is defined for a  $\leq x \leq b$ ,  $c \leq t \leq d$  and is such that the derivative  $D_2\phi(x, t)$  with respect to t is a function which is uniformly continuous in both variables. Define

$$f(t) = \int_a^b \phi(x,t) dx$$
  $(c \le t \le d).$ 

Then for c < t < d, f'(t) exists and

$$f'(t) = \int_a^b (D_2\phi)(x,t)dx.$$

# Differentiation of integrals

### Proof.

• Define the difference quotient, for  $h \neq 0$ ,

$$\psi_h(x,t) = \frac{\phi(x,t+h) - \phi(x,t)}{h}$$

 By the Mean Value Theorem, for each fixed x there is a u between t and t + h, such that

$$\psi_h(x,t)=(D_2\phi)(x,u).$$

• By the uniform continuity, for each  $\epsilon > 0$  there is a  $\delta > 0$ , such that if  $|h| < \delta$ ,

$$|\psi_h(x,t) - (D_2\phi)(x,t)| = |(D_2\phi)(x,u) - (D_2\phi)(x,t)| < \epsilon.$$

3

イロト イヨト イヨト イヨト

# Differentiation of integrals

### Proof.

• Since 
$$|\psi_h(x,t) - (D_2\phi)(x,t)| < \epsilon$$
,

$$\begin{split} \left| \int_{a}^{b} \psi_{h}(x,t) dx - \int_{a}^{b} (D_{2}\phi)(x,t) dx \right| \\ &\leq \int_{a}^{b} \left| \psi_{h}(x,t) - (D_{2}\phi)(x,t) \right| dx < \epsilon(b-a) \end{split}$$

• Thus 
$$\lim_{h\to 0} \int_a^b \psi_h(x,t) dx = \int_a^b (D_2\phi)(x,t) dx$$
.  
• Note

$$\frac{f(t+h)-f(t)}{h}=\int_a^b\psi_h(x,t)dx,$$

which completes the proof.

3

イロト イヨト イヨト イヨト



- 2

イロン イヨン イヨン イヨン

#### Proof.

• Define  $f(x, t) = e^{-tx} \frac{\sin x}{x}$  and set

$$F(t)=\int_0^\infty e^{-tx}\frac{\sin x}{x}dx.$$

#### Thus

$$F'(t) = -\int_0^\infty e^{-tx} \sin x dx$$

by applying the previous theorem to  $F_n(t) = \int_0^n e^{-tx} \frac{\sin x}{x} dx$  and letting  $n \to \infty$ . Note that the convergence of the derivative is uniform for t in fixed intervals [a, b] with 0 < a < b, and  $F_n(t)$  converges to F(t) at each point, so the theorem regarding uniform convergence of derivatives applies.

3

イロト イポト イヨト イヨト

### Proof.

• Write

$$F'(t) = \frac{i}{2} \int_0^\infty e^{-tx+ix} - e^{-tx-ix} dx$$
$$= \frac{i}{2} \left[ \frac{1}{t-i} - \frac{1}{t+i} \right] = \frac{-1}{1+t^2}$$

• Thus, by the Fundamental Theorem of Calculus,

$$F(b) - F(a) = -\int_a^b \frac{dt}{1+t^2} = \arctan a - \arctan b.$$

Bob Hough

æ

・ロン ・四 ・ ・ ヨン ・ ヨン

### Proof.

• Let  $t o \infty$  and observe that  $|e^{-tx} rac{\sin x}{x}| < e^{-tx}$ , so

$$\lim_{t\to\infty}F(t)=0.$$

• Thus 
$$F(t) = \int_0^\infty e^{-tx} \frac{\sin x}{x} dx = \frac{\pi}{2} - \arctan t$$
.

| -   |        |         |
|-----|--------|---------|
| Pak |        | au or b |
| DUL | ) I IC | JUEIT   |
|     |        |         |

- 2

・ロン ・四 ・ ・ ヨン ・ ヨン