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Continuity of power series

Theorem

Suppose
∑∞

n=0 an converges, and define

f (x) =
∞∑
n=0

anxn, −1 < x < 1.

Then limx→1 f (x) =
∑∞

n=0 an.
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Continuity of power series

Proof.

Let s−1 = 0, sn =
∑n

k=0 ak and s =
∑∞

k=0 ak . By Abel summation,

m∑
n=0

anxn =
m∑

n=0

(sn − sn−1)xn = (1− x)
m−1∑
n=0

snxn + smxm.

For |x | < 1, letting m→∞ obtains

f (x) = (1− x)
∞∑
n=0

snxn = s + (1− x)
∞∑
n=0

(sn − s)xn.
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Continuity of power series

Proof.

Given ε > 0, choose N such that n > N implies |sn − s| < ε. Then

∞∑
n=0

|sn − s||x |n ≤
N∑

n=0

|sn − s|+ ε
|x |N+1

1− |x |
.

Thus,

|f (x)− s| ≤ |1− x |
N∑

n=0

|sn − s|+ ε.

For x sufficiently close to 1, this is bounded by 2ε. Letting ε ↓ 0 proves
limx→1 f (x) = s.
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Example

Recall that, by the alternating series test, the series
∑∞

n=1
(−1)n+1

n
converges. We can now evaluate its value.

For |x | < 1, f (x) = 1
1+x = 1− x + x2 − x3 + .... Hence, integrating,

log(1 + x) =
∞∑
n=1

(−1)n+1xn

n
.

Letting x → 1 obtains
∑∞

n=1
(−1)n+1

n = log 2.
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Double sums

Theorem

Given a double sequence {ai ,j}∞i ,j=1 of non-negative terms, suppose that∑∞
j=1 ai ,j = bi and

∑∞
i=1 bi converges. Then

∞∑
i=1

∞∑
j=1

ai ,j =
∞∑
j=1

∞∑
i=1

ai ,j .
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Double sums

Proof.

Note that, for each j ,
∑

i ai ,j converges by comparison with
∑

i bi .
Furthermore, by the finite linearity property of convergent series,

M∑
j=1

∞∑
i

ai ,j =
∞∑
i=1

M∑
j=1

ai ,j ≤
∞∑
i=1

∞∑
j=1

ai ,j .

Since
∑M

j=1

∑∞
i=1 ai ,j is increasing as a function of M and bounded above,

it converges. The equality now follows by symmetry.
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Double sums

Theorem

Given a double sequence {ai ,j}∞i ,j=1, suppose that
∑∞

j=1 |ai ,j | = bi and∑∞
i=1 bi converges. Then

∞∑
i=1

∞∑
j=1

ai ,j =
∞∑
j=1

∞∑
i=1

ai ,j .
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Double sums

Proof.

Separate ai ,j into its positive and negative parts. For these, the equality
follows from the previous result. The claimed result now follows from finite
linearity.
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Change of base point

Theorem

Suppose

f (x) =
∞∑
n=0

cnxn,

the series converging in |x | < R. If −R < a < R, then f can be expanded
in a power series about the point x = a, which converges in
|x − a| < R − |a|, and for |x − a| < R − |a|,

f (x) =
∞∑
n=0

f (n)(a)

n!
(x − a)n,

and f (n)(a) =
∑∞

m=n
m!

(m−n)!cmam−n.
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Change of base point

Proof.

The formula for f (x) is a general fact regarding power series. To prove the
convergence, write

f (x) =
∞∑
n=0

cn[(x − a) + a]n

=
∞∑
n=0

cn

n∑
k=0

(
n

k

)
an−k(x − a)k

=
∞∑
k=0

[ ∞∑
n=k

(
n

k

)
cnan−k

]
(x − a)k .

The formula for f (n)(a) is obtained by equating coefficients of (x − a)n.
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Change of base point

Proof.

The exchange in order of summation in the previous slide is justified, since

∞∑
n=0

n∑
k=0

∣∣∣∣cn(n

k

)
an−k(x − a)k

∣∣∣∣ ≤ ∞∑
n=0

|cn|(|x − a|+ |a|)n

converges absolutely for |x − a|+ |a| < R.
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Example

The exponential function may be rewritten as

E (x) =
∞∑
n=0

xn

n!

=
∞∑
n=0

[ ∞∑
k=n

(
k

n

)
ak−n

k!

]
(x − a)n

=
∞∑
n=0

 1

n!

∞∑
j=0

aj

j!

 (x − a)n

= E (a)
∞∑
n=0

(x − a)n

n!
= E (a)E (x − a).

This gives an alternate route to prove the multiplication formula.
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The logarithm

Define, for |z | < 1,

L(1 + z) =
∞∑
n=1

(−1)n−1
zn

n
.

Theorem

For complex z such that |z | < 1,

E (L(1 + z)) = 1 + z .
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The logarithm

Proof.

The equality holds for real z , since L(1 + x) = log(1 + x) follows by
integrating the power series for 1

1+x .

We check that E (L(1 + z)) is given by a power series in |z | < 1, from
which the equality for complex z follows.

Define EN(x) =
∑N

n=0
xn

n! . For each fixed N,

EN(L(1 + z)) =
N∑

n=0

L(1 + z)n

n!

=
N∑

n=0

1

n!

( ∞∑
k=1

(−1)k−1zk

k

)n

=
N∑

n=0

1

n!

( ∞∑
k=0

bk,nzk

)

is a power series in z , obtained by taking the Cauchy product, which
is justified by absolute convergence.
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The logarithm

Proof.

One has absolute convergence in the sum,

∞∑
n=0

1

n!

( ∞∑
k=1

bk,nzk

)
=
∞∑
k=0

zk

( ∞∑
n=0

bk,n

n!

)

by comparison with the series for

E (−L(1− |z |)) =
∞∑
n=0

1

n!

( ∞∑
k=1

|z |k

k

)n

=
1

1− |z |

which is a series of only positive terms.
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Power series and differential equations

Problem

Solve the non-linear ODE (1− x2)y ′′ = −2y.

Solution

Guess a solution of type y =
∑∞

n=0 anxn with a positive radius of
convergence about 0.

Differentiating term-by-term

y ′′ =
∞∑
n=2

n(n − 1)anxn−2.
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Power series and differential equations

Solution

Thus

(1− x2)y ′′ =
∞∑
n=2

n(n − 1)anxn−2 −
∞∑
n=2

n(n − 1)anxn

=
∞∑
n=0

(n + 2)(n + 1)an+2xn −
∞∑
n=0

n(n − 1)anxn

=
∞∑
n=0

[(n + 2)(n + 1)an+2 − n(n − 1)an] xn

Equating coefficients (n + 2)(n + 1)an+2 − n(n − 1)an = −2an, or

an+2 =
n2 − n − 2

(n + 2)(n + 1)
an =

n − 2

n + 2
an.
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Power series and differential equations

Solution

Since an+2 = n−2
n+2an, the even coefficients are given by

a2 = −a0, a4 = a6 = a8 = ... = 0.

The odd coefficients are given by, for n ≥ 0,

a2n+1 =
−1

(2n + 1)(2n − 1)
a1.

Hence the full solution is given by

y = a0(1− x2)− a1

∞∑
n=0

1

(2n + 1)(2n − 1)
x2n+1.

This convergences for |x | < 1, hence is a genuine solution.
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The binomial series

Theorem

Define the generalized binomial coefficient(
α

n

)
=
α(α− 1) · · · (α− n + 1)

n!
.

For any real α,

(1 + x)α =
∞∑
n=0

(
α

n

)
xn, |x | < 1.
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The binomial series

Proof.

The function y = (1 + x)α satisfies y ′ − α
1+x y = 0 with initial

condition y(0) = 1, and is the unique solution.

Define

f (x) =
∞∑
n=0

(
α

n

)
xn.

The generalized binomial coefficient satisfies(
α

n + 1

)
=
α− n

n + 1

(
α

n

)
,

and thus f (x) converges in |x | < 1 by the ratio test.
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The binomial series

Proof.

Differentiating term-by-term

f ′(x) =
∞∑
n=0

(n + 1)

(
α

n + 1

)
xn.

Thus

(1 + x)f ′(x) =
∞∑
n=0

{
(n + 1)

(
α

n + 1

)
+ n

(
α

n

)}
xn

= α

∞∑
n=0

(
α

n

)
xn = αf (x).

Also, f (0) = 1 so f (x) = (1 + x)α.
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Differentiation of integrals

Theorem

Suppose φ(x , t) is defined for a ≤ x ≤ b, c ≤ t ≤ d and is such that the
derivative D2φ(x , t) with respect to t is a function which is uniformly
continuous in both variables. Define

f (t) =

∫ b

a
φ(x , t)dx (c ≤ t ≤ d).

Then for c < t < d, f ′(t) exists and

f ′(t) =

∫ b

a
(D2φ)(x , t)dx .
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Differentiation of integrals

Proof.

Define the difference quotient, for h 6= 0,

ψh(x , t) =
φ(x , t + h)− φ(x , t)

h
.

By the Mean Value Theorem, for each fixed x there is a u between t
and t + h, such that

ψh(x , t) = (D2φ)(x , u).

By the uniform continuity, for each ε > 0 there is a δ > 0, such that if
|h| < δ,

|ψh(x , t)− (D2φ)(x , t)| = |(D2φ)(x , u)− (D2φ)(x , t)| < ε.
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Differentiation of integrals

Proof.

Since |ψh(x , t)− (D2φ)(x , t)| < ε,∣∣∣∣∫ b

a
ψh(x , t)dx −

∫ b

a
(D2φ)(x , t)dx

∣∣∣∣
≤
∫ b

a
|ψh(x , t)− (D2φ)(x , t)| dx < ε(b − a).

Thus limh→0

∫ b
a ψh(x , t)dx =

∫ b
a (D2φ)(x , t)dx .

Note
f (t + h)− f (t)

h
=

∫ b

a
ψh(x , t)dx ,

which completes the proof.
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Example

Theorem

For t > 0, ∫ ∞
0

e−tx
sin x

x
dx =

π

2
− arctan t.
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Example

Proof.

Define f (x , t) = e−tx sin x
x and set

F (t) =

∫ ∞
0

e−tx
sin x

x
dx .

Thus

F ′(t) = −
∫ ∞
0

e−tx sin xdx

by applying the previous theorem to Fn(t) =
∫ n
0 e−tx sin x

x dx and
letting n→∞. Note that the convergence of the derivative is
uniform for t in fixed intervals [a, b] with 0 < a < b, and Fn(t)
converges to F (t) at each point, so the theorem regarding uniform
convergence of derivatives applies.
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Example

Proof.

Write

F ′(t) =
i

2

∫ ∞
0

e−tx+ix − e−tx−ixdx

=
i

2

[
1

t − i
− 1

t + i

]
=
−1

1 + t2
.

Thus, by the Fundamental Theorem of Calculus,

F (b)− F (a) = −
∫ b

a

dt

1 + t2
= arctan a− arctan b.
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Example

Proof.

Let t →∞ and observe that |e−tx sin x
x | < e−tx , so

lim
t→∞

F (t) = 0.

Thus F (t) =
∫∞
0 e−tx sin x

x dx = π
2 − arctan t.
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