Math 141: Lecture 18 Sequences and infinite series

Bob Hough

November 14, 2016

Bob Hough

Math 141: Lecture 18

November 14, 2016 1 / 44

Sequences

Recall the definition of a sequence.

Definition

A sequence $\{a_n\}_{n=1}^{\infty}$ is a function *a* whose domain is the positive integers.

Sequences are often written beginning at either index 0 or 1.

Examples

- The sequence $\{a_n = \frac{1}{n}\}_{n=1}^{\infty}$ begins $1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots$
- The sequence of powers of 2 $\{a_n = 2^n\}_{n=0}^{\infty}$ begins

 $1, 2, 4, 8, 16, 32, 64, \ldots$

• The sequence $\{\sin(\pi n/2)\}_{n=1}^{\infty}$ begins

$$1, 0, -1, 0, 1, 0, -1, 0, 1, 0, -1, \dots$$

- 3

くほと くほと くほと

Limits

Definition

A sequence $\{a_n\}_{n=0}^{\infty}$ has limit *L* if, for each $\epsilon > 0$, there is $N \ge 0$ such that n > N implies

$$|a_n-L|<\epsilon.$$

A sequence $\{a_n\}_{n=0}^{\infty}$ has limit ∞ if, for each M > 0 there is $N \ge 0$ such that n > N implies $a_n > M$.

Examples

• If
$$\alpha > 0$$
, $\lim_{n \to \infty} \frac{1}{n^{\alpha}} = 0$.
• $\lim_{n \to \infty} x^n = \begin{cases} 0 & |x| < 1\\ 1 & x = 1\\ \text{Does not exist} & x = -1\\ \infty & x > 1 \end{cases}$
• $\lim_{n \to \infty} \left(1 + \frac{a}{n}\right)^n = e^a$.

- 2

・ロト ・四ト ・ヨト ・ヨト

Monotonic sequences

Definition

A sequence ${f(n)}_{n=0}^{\infty}$ is *increasing* if for all *n*,

 $f(n+1) \geq f(n),$

and decreasing if for all n,

 $f(n+1) \leq f(n).$

The sequence is *monotonic* if it is increasing or decreasing.

Convergence of monotonic sequences

Theorem

A monotonic sequence is convergent if and only if it is bounded.

Proof.

First suppose the sequence $\{f(n)\}$ is bounded and suppose without loss of generality that it is increasing, otherwise replace f(n) with -f(n).

- Since {f(n)} is bounded it has a sup, α. We'll show that this is the limit.
- Given $\epsilon > 0$ choose N such that $\alpha f(N) < \epsilon$.
- Since f is increasing, and since α is an upper bound, for n > N, $\alpha \epsilon < f(n) \le \alpha$.

(日) (周) (三) (三)

Convergence of monotonic sequences

Proof.

Now suppose $\{f(n)\}$ has limit L. Let N be such that n > N implies |f(n) - L| < 1. Let $M = \max\{|f(n)| : 0 \le n \le N\}$. It follows that for all n,

 $|f(n)| \leq \max\{|L|+1, M\}.$

Note that in the second part of the proof, monotonicity was not used. A convergent sequence is bounded.

Cauchy sequences

Definition

A sequence $\{a_n\}_{n=0}^{\infty}$ is *Cauchy* if, for each $\epsilon > 0$, there exists N > 0 such that m, n > N implies $|a_n - a_m| < \epsilon$.

3

Examples

The sequence $\{a_n = \frac{1}{2^n}\}$ is Cauchy. To prove this, given $\epsilon > 0$, choose N such that $\frac{1}{2^N} < \frac{\epsilon}{2}$. For m, n > N, by the triangle inequality,

$$\left|\frac{1}{2^m} - \frac{1}{2^n}\right| \le \frac{1}{2^m} + \frac{1}{2^n} < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon.$$

イロト 不得下 イヨト イヨト 二日

limsup and liminf

Definition

Let $\{a_n\}_{n=0}^{\infty}$ be a bounded sequence. The *limit supremum* of $\{a_n\}$ is

$$\limsup_{n\to\infty} a_n = \lim_{N\to\infty} \sup\{a_n : n > N\}.$$

The *limit infimum* of $\{a_n\}$ is

$$\liminf_{n\to\infty} a_n = \lim_{N\to\infty} \inf\{a_n : n > N\}.$$

Both of these limits exist.

3

- 4 週 ト - 4 三 ト - 4 三 ト

limsup and liminf

Theorem

Let $\{a_n\}_{n=0}^{\infty}$ be a bounded sequence. The limits supremum and infimum of a_n exist.

Proof.

- To check that the limit supremum exists, let |a_n| ≤ M and define sequence {b_N}[∞]_{N=0} by b_N = sup{a_n : n > N}.
- Observe that $|b_N| \le M$ for all N, since M is an upper bound for $\{|a_n|\}$.
- The sequence $\{b_N\}$ is decreasing, since if N < M, the sup in b_M is taken over a subset of the set in the sup of b_N .
- Since $\{b_N\}_{N=0}^{\infty}$ is bounded and monotonic, it converges.

The argument for the limit infimum follows on replacing a_n with $-a_n$.

(日) (同) (三) (三)

Theorem

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence of real numbers. The sequence $\{a_n\}_{n=0}^{\infty}$ has a limit if and only if it is Cauchy.

Proof.

First suppose $\{a_n\}_{n=0}^{\infty}$ converges to a limit *L*. Given $\epsilon > 0$, choose N > 0 such that n > N implies $|a_n - L| < \frac{\epsilon}{2}$. Then for m, n > N, by the triangle inequality,

$$|a_m-a_n|=|(a_m-L)+(L-a_n)|\leq |a_m-L|+|L-a_n|<\epsilon,$$

so the sequence $\{a_n\}_{n=0}^{\infty}$ is Cauchy.

(人間) トイヨト イヨト ニヨ

Proof.

Next suppose that $\{a_n\}_{n=0}^{\infty}$ is a Cauchy sequence. We show that it has a limit. Observe that the Cauchy property implies that $\{a_n\}_{n=0}^{\infty}$ is bounded.

- Thus $\{a_n\}_{n=0}^{\infty}$ is bounded by the maximum of $|a_{N+1}| + 1$ and the size of all terms preceding $|a_{N+1}|$, of which there are only finitely many.

Proof.

- Since {a_n}[∞]_{n=0} is bounded, its limit supremum exists, call it α. We show that the limit of {a_n}[∞]_{n=0} is α, also.
- Given $\epsilon > 0$, use the Cauchy property to choose N such that n, m > N implies $|a_n a_m| < \frac{\epsilon}{2}$.
- Since the sequence $b_M = \sup\{a_n : n > M\}$ decreases to limit α , we can choose $N_1 > N$ such that $M > N_1$ implies that $\alpha \le \sup\{a_n : n > M\} < \alpha + \frac{\epsilon}{2}$.
- Choose $m > N_1$ such that $\alpha \frac{\epsilon}{2} < a_m < \alpha + \frac{\epsilon}{2}$.
- It follows that, for n > N,

$$|\mathbf{a}_n - \alpha| \le |(\mathbf{a}_n - \mathbf{a}_m) + (\mathbf{a}_m - \alpha)| \le |\mathbf{a}_n - \mathbf{a}_m| + |\mathbf{a}_m - \alpha| < \epsilon$$

(日) (同) (三) (三)

Definition

A metric space in which every Cauchy sequence converges to a limit is called *complete*.

Infinite series

Definition

Given a sequence $\{a_n\}_{n=1}^{\infty}$, its sequence of partial sums is the sequence $\{s_n\}_{n=1}^{\infty}$ defined by

$$s_n=\sum_{k=1}^n a_k.$$

The sequence $\{s_n\}_{n=1}^{\infty}$ is also called an *infinite series* or *series* and is denoted ∞

$$\sum_{k=1}a_k.$$

ecture 18

Bob Hough	Math 141: L
DOD HOUGH	

Convergence

Definition

Given a sequence $\{a_n\}_{n=1}^{\infty}$, the infinite series $\sum_{k=1}^{\infty} a_k$ converges to the limit *L* if the sequence of partial sums $\{s_n\}_{n=1}^{\infty}$ has limit *L*,

$$\lim_{n\to\infty}s_n=L.$$

In this case we write $\sum_{k=1}^{\infty} a_k = L$.

If $\sum_{k=1}^{\infty} a_k$ does not converge to a finite limit, it is said to *diverge*. If $\lim_{n\to\infty} s_n = \infty$ we write $\sum_{k=1}^{\infty} a_k = \infty$ and say that the infinite series *diverges to infinity*.

Properties of convergent series

Theorem

Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be sequences of complex numbers with convergent infinite series $\sum_{k=1}^{\infty} a_k$ and $\sum_{k=1}^{\infty} b_k$. Then for any complex numbers α and β , the sequence $\{\alpha a_n + \beta b_n\}_{n=1}^{\infty}$ has a convergent infinite series, and

$$\sum_{k=1}^{\infty} (\alpha a_k + \beta b_k) = \alpha \sum_{k=1}^{\infty} a_k + \beta \sum_{k=1}^{\infty} b_k.$$

Proof.

Denote $\{s_n\}_{n=1}^{\infty}$, $\{t_n\}_{n=1}^{\infty}$, $\{u_n\}_{n=1}^{\infty}$ the sequences of partial sums of $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ and $\{\alpha a_n + \beta b_n\}_{n=1}^{\infty}$. Then for each n, $u_n = \alpha s_n + \beta t_n$. By the linearity property of limits,

$$\lim_{n\to\infty} u_n = \alpha \lim_{n\to\infty} s_n + \beta \lim_{n\to\infty} t_n.$$

This is the stated result.

Properties of convergent series

Theorem

Let $\{a_n\}_{n=1}^{\infty}$ and $\{b_n\}_{n=1}^{\infty}$ be sequences such that $\sum_{n=1}^{\infty} a_n$ converges, but $\sum_{n=1}^{\infty} b_n$ diverges. Then $\sum_{n=1}^{\infty} (a_n + b_n)$ diverges. If $\sum_{n=1}^{\infty} b_n = \infty$ then $\sum_{n=1}^{\infty} (a_n + b_n) = \infty$.

Proof.

The first statement follows immediately from the previous theorem, since if $\sum_{n=1}^{\infty} (a_n + b_n)$ were convergent, this would imply the convergence of $\sum_{n=1}^{\infty} b_n$. The second statement is straightforward.

Properties of convergent series

Theorem

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence and suppose that $\sum_{n=1}^{\infty} a_n$ converges. Then $a_n \to 0$ as $n \to \infty$.

Proof.

Let $\{s_n\}_{n=1}^{\infty}$ be the sequence of partial sums. Since this sum converges, it is Cauchy. Given $\epsilon > 0$, let N be such that n > m > N implies $|s_n - s_m| < \epsilon$. In particular, $|a_{m+1}| = |s_{m+1} - s_m| < \epsilon$ so $a_m \to 0$.

Examples

• $\sum_{k=1}^{\infty} \frac{1}{2^k} = 1$. To prove this, let m < n and note that the sequence of partial sums satisfies

$$s_n - s_m = \sum_{k=m+1}^n \frac{1}{2^k} = \frac{1}{2^m} - \frac{1}{2^n}.$$

Since this tends to 0 as a function of *m* the sequence is Cauchy, hence converges to a limit *s*. Notice that s = 2s - s = 1.

• $\sum_{k=1}^{\infty} \frac{1}{k} = \infty$. To check this, note that the partial sums s_n satisfy

$$s_n = \sum_{k=1}^n \frac{1}{k} = \int_1^{n+1} \frac{dx}{\lfloor x \rfloor} > \int_1^{n+1} \frac{dx}{x} = \log(n+1).$$

Thus the sequence of partial sums tends to infinity.

• $\sum_{k=1}^{\infty} \frac{1}{2^k} + \frac{1}{k} = \infty$. This now follows from the previous theorem.

Telescoping series

Let $\{b_n\}_{n=1}^{\infty}$ be a sequence. The sequence $\{a_n = b_n - b_{n+1}\}_{n=1}^{\infty}$ has sequence of partial sums $\{s_n\}_{n=1}^{\infty}$ given by

$$s_n = \sum_{k=1}^n a_k = b_1 - b_{n+1}.$$

This series is called a telescoping series.

Telescoping series

Theorem

Let $\{b_n\}_{n=1}^{\infty}$ and $\{a_n = b_n - b_{n+1}\}_{n=1}^{\infty}$ be two sequences of complex numbers. The series $\sum a_n$ converges if and only if the sequence $\{b_n\}_{n=1}^{\infty}$ converges, in which case we have

$$\sum_{n=1}^{\infty}a_n=b_1-\lim_{n\to\infty}b_n.$$

Proof.

This follows from the basic properties of limits.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Example

• $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$. To check this, note that the sequence $\{a_n = \frac{1}{n(n+1)}\}_{n=1}^{\infty}$ satisfies

$$a_n = rac{1}{n} - rac{1}{n+1}.$$

The sum now follows from the telescoping property via sequence $\{b_n = \frac{1}{n}\}_{n=1}^{\infty}$.

• For x a complex number other than a negative integer,

 $\frac{1}{(n+x)(n+x+1)(n+x+2)} = \frac{1}{2} \left(\frac{1}{(n+x)(n+x+1)} - \frac{1}{(n+x+1)(n+x+2)} \right).$ Thus, by the telescoping property, since $\frac{1}{(n+x)(n+x+1)}$ tends to 0 as $n \to \infty$,

$$\sum_{n=1}^{\infty} \frac{1}{(n+x)(n+x+1)(n+x+2)} = \frac{1}{2(x+1)(x+2)}.$$

Example

• The series $\sum_{n=1}^{\infty} \log \frac{n}{n+1}$ diverges to negative infinity, since $\log \frac{n}{n+1} = \log n - \log(n+1)$, and the series telescopes.

3

A B F A B F

< 67 ▶

Geometric series

Theorem

If x is complex and |x| < 1, the geometric series $\sum_{n=0}^{\infty} x^n$ converges and

$$1 + x + x^2 + x^3 + \dots = \frac{1}{1 - x}.$$

If $|x| \ge 1$ the series diverges.

3

Geometric series

Proof.

The sequence of partial sums s_n satisfies

$$s_n = 1 + x + x^2 + \dots + x^n = \begin{cases} \frac{1 - x^{n+1}}{1 - x} & x \neq 1\\ n & x = 1 \end{cases}$$

This converges, with value $\frac{1}{1-x}$, if and only if |x| < 1.

3

- 4 目 ト - 4 日 ト - 4 日 ト

.

Examples

- For |x| < 1,
 - Replacing x with x^2 obtains

$$1 + x^{2} + x^{4} + \dots + x^{2n} + \dots = \frac{1}{1 - x^{2}}.$$

• Multiplying by x,

$$x + x^{3} + x^{5} + \dots + x^{2n+1} + \dots = \frac{x}{1 - x^{2}}.$$

• Replacing x with -x obtains

$$1 - x + x^{2} - x^{3} + \dots + (-1)^{n} x^{n} + \dots = \frac{1}{1 + x}.$$

• Replacing x by x^2 obtains

$$1 - x^{2} + x^{4} - \dots + (-1)^{n} x^{2n} + \dots = \frac{1}{1 + x^{2}}.$$

3

Alternating series

Definition

A sequence $\{a_n\}_{n=1}^{\infty}$ is said to be *alternating* if, for all $n \ge 1$, $a_n a_{n+1} \le 0$.

Theorem

Let $\{a_n\}_{n=1}^{\infty}$ be an alternating sequence and suppose that $\{|a_n|\}_{n=1}^{\infty}$ is decreasing and tends to 0. Then $\sum_{n=1}^{\infty} a_n = L$ converges to a finite limit, and, for each $N \ge 1$,

$$\left|L-\sum_{n=1}^N a_n\right|\leq |a_{N+1}|.$$

Alternating series

Proof.

Without loss of generality, assume that $a_1 \ge 0$. Otherwise, multiply the sequence by -1.

• Since $|a_{2n}| \ge |a_{2n+1}| \ge |a_{2n+2}|$ and $a_{2n}, a_{2n+2} \le 0$ while $a_{2n+1} \ge 0$, it follows that the partial sums satisfy

$$s_1 \geq s_3 \geq s_5 \geq \dots, \qquad s_2 \leq s_4 \leq s_6 \leq \dots,$$

and, for all $n \ge 1$, $s_{2n-1} \ge s_{2n}$ and $s_{2n} \le s_{2n+1}$.

• It follows that, for all N > 2n, $s_{2n} \le s_N \le s_{2n-1}$. Since the odd partial sums are decreasing and bounded below, they converge to a limit *o*. Since the even partial sums are increasing and bounded above they converge to a limit *e*.

(日) (同) (三) (三)

Alternating series

Proof.

- One has, for any $n, s_{2n} \le e \le o \le s_{2n-1}$. Since $|s_{2n-1} s_{2n}| \to 0$ as $n \to \infty, o = e$.
- These inequalities show that $|s_n o| \le |s_{n+1} s_n| = |a_{n+1}|$ as required.

3

- 4 同 6 4 日 6 4 日 6

Definition

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence. The series $\sum_{n=1}^{\infty} a_n$ is said to converge absolutely if the series $\sum_{n=1}^{\infty} |a_n|$ converges.

・ 何 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Theorem

Let $\{a_n\}_{n=1}^{\infty}$ be a sequence of complex numbers. If the series converges absolutely then it converges. The converse is false.

Proof.

- Let $\{s_n\}_{n=1}^{\infty}$ and $\{t_n\}_{n=1}^{\infty}$ denote the sequence of partial sums of $\{a_n\}_{n=1}^{\infty}$ and $\{|a_n|\}_{n=1}^{\infty}$, that is, $s_n = \sum_{k=1}^n a_k$, $t_n = \sum_{k=1}^n |a_k|$.
- Since the sequence $\{t_n\}$ converges, it is Cauchy.
- Given € > 0, choose N sufficiently large so that m > n > N implies that |t_m − t_n| < €. By the triangle inequality,

$$|s_m-s_n|=\left|\sum_{k=m+1}^n a_k\right|\leq \sum_{k=m+1}^n |a_k|=|t_m-t_n|<\epsilon.$$

This proves that $\{s_n\}_{n=1}^{\infty}$ is Cauchy, and hence converges.

Proof.

To prove that the converse does not hold, note that $\sum_{k=1}^{\infty} \frac{(-1)^k}{k}$ converges by the alternating series criteria, but does not converge absolutely, since we've already checked that $\sum_{k=1}^{\infty} \frac{1}{k} = \infty$.

Rearrangement

Definition

A rearrangement of the natural numbers is a bijective map $\pi : \mathbb{N} \to \mathbb{N}$. A rearrangement of the sequence $\{a_n\}_{n=0}^{\infty}$ is a sequence $\{a_{\pi(n)}\}_{n=0}^{\infty}$ where π is a rearrangement of the natural numbers.

Theorem

Let $\{a_n\}_{n=0}^{\infty}$ be a sequence, and suppose that $\sum_{n=0}^{\infty} a_n = L$ converges absolutely to a finite limit. Then for any rearrangement π of \mathbb{N} ,

$$\sum_{n=0}^{\infty}a_{\pi(n)}=L.$$

-	
Lab	u ar b
בוסכו.	וועוו
	-0

Proof.

- Let $\tau(n)$ denote the first number m such that $\{0, 1, 2, ..., n\} \subset \{\pi(0), \pi(1), ..., \pi(m)\}.$
- Let σ(n) denote the maximum number among {π(0), π(1), ..., π(n)}.
 Given ε > 0.
 - Since the sequence of partial sums of $|a_n|$ is Cauchy, choose N_1 such that $N_1 \le m < n$ implies $\sum_{k=m+1}^n |a_k| < \frac{\epsilon}{2}$
 - Choose N_2 such that $m \ge N_2$ implies $\left|L \sum_{k=1}^m a_k\right| < \frac{\epsilon}{2}$. Let $N = \max(N_1, N_2)$.
- For $n > \tau(N)$, by the triangle inequality,

$$\left|\sum_{k=0}^n a_{\pi(k)} - L\right| < \frac{\epsilon}{2} + \left|\sum_{k=0}^n a_{\pi(k)} - \sum_{k=0}^N a_k\right|$$

3

イロト イヨト イヨト イヨト

Proof.

• Recall that $\{0, 1, 2, ..., N\} \subset \{\pi(0), \pi(1), ..., \pi(\tau(N))\}$ and $\sigma(n) = \max\{\pi(0), ..., \pi(n)\}$. Hence, by the triangle inequality and the Cauchy property,

$$\begin{vmatrix} \sum_{k=0}^{n} a_{\pi(k)} - \sum_{k=0}^{N} a_k \end{vmatrix} = \begin{vmatrix} \sum_{0 \le k \le n, \pi(k) > N} a_{\pi(k)} \end{vmatrix}$$
$$\leq \sum_{0 \le k \le n, \pi(k) > N} |a_{\pi(k)}|$$
$$\leq \sum_{k=N+1}^{\sigma(n)} |a_k| < \frac{\epsilon}{2} \end{vmatrix}$$

It follows that $\left|\sum_{k=0}^{n} a_{\pi(k)} - L\right| < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$.

Theorem (Riemann)

Let $\{a_n\}_{n=0}^{\infty}$ be a real sequence and suppose that $\sum_{n=0}^{\infty} a_n$ is convergent, but not absolutely convergent. For any real number α there is a rearrangement of the natural numbers π , such that

$$\sum_{n=0}^{\infty} a_{\pi(n)} = \alpha.$$

Pob	u or h
000	<u> – – –</u>

Proof.

- Denote a⁺_n = max{a_n,0} and a⁻_n = min{a_n,0}. Thus {a⁺_n} is a sequence of non-negative terms and {a⁻_n} is a sequence of non-positive terms.
- We have that $\sum_{n} a_{n}^{+}$ and $\sum_{n} a_{n}^{-}$ both diverge. To check this, note that it is impossible that one diverges and the other converges, since $\sum a_{n} = \sum (a_{n}^{+} + a_{n}^{-})$ converges. It is also impossible that both converge, since $\sum_{n} |a_{n}| = \sum_{n} (a_{n}^{+} a_{n}^{-})$ diverges.

Proof.

- Determine the rearrangement π as follows. If α > 0, let π(0) be the index of the first non-negative term in {a_n}, otherwise the index of the first negative term. For n > 0, if ∑_{k=0}ⁿ⁻¹ a_{π(k)} < α then let π(n) be the first unused index of a non-negative term, otherwise the first unused index of a negative term.
- Since both the sum of the non-negative and negative terms diverge, the function π alternates between taking non-negative and negative terms infinitely often, and in particular takes on all natural numbers, hence is genuinely a rearrangement.

Proof.

- Let $s_n = \sum_{k=0}^n a_{\pi(k)}$ denote the sequence of partial sums. If $s_n \alpha$ and $s_{n+1} - \alpha$ have the same sign, then $|s_{n+1} - \alpha| \le |s_n - \alpha|$. If they have opposite signs, then $|s_{n+1} - \alpha| < |s_{n+1} - s_n| = |a_{\pi(n+1)}|$. In particular, for all n, $|s_n - \alpha| \le |a_{\pi(\sigma(n))}|$ where $\sigma(n)$ is the last index before n where the sign of $s_m - \alpha$ changed.
- We have $\pi(n) \to \infty$ as $n \to \infty$ since π is a bijection, and $\sigma(n) \to \infty$ as $n \to \infty$, since there are infinitely many sign changes. Hence $\pi(\sigma(n)) \to \infty$ as $n \to \infty$.
- Since $a_n \to 0$ by convergence of $\sum a_n$, and $\pi(\sigma(n)) \to \infty$, the convergence to α follows.

イロト 不得下 イヨト イヨト 二日