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Sequences

Recall the definition of a sequence.
Definition J

A sequence {a,}7°; is a function a whose domain is the positive integers.

Sequences are often written beginning at either index 0 or 1.
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Examples

o The sequence {a, = 11°°, begins

-l>|l—‘
ol

1
'3’

@ The sequence of powers of 2 {a, = 2"

Nll—l

—
3
I

o> begins
1,2,4,8,16,32,64,....

@ The sequence {sin(mn/2)}°° ; begins

17 07 _17 07 17 07 _1a 07 17 Oa _1a
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Limits

Definition
A sequence {a,}72 has limit L if, for each € > 0, there is N > 0 such that
n > N implies

lan — L| <.
A sequence {a,}°2, has limit oo if, for each M > 0 there is N > 0 such
that n > N implies a, > M.
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Examples

o Ifa>0, limy, ,,La =0.
0 x| <1
@ lim x" = 1 x=1
o0 7 ) Does not exist  x = —1
00 x>1

o limy o (14 2)" = e
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Monotonic sequences

Definition

A sequence {f(n)}°2, is increasing if for all n,
f(n+1) > f(n),
and decreasing if for all n,
f(n+1) < f(n).

The sequence is monotonic if it is increasing or decreasing.
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Convergence of monotonic sequences

Theorem

A monotonic sequence is convergent if and only if it is bounded.

Proof.

First suppose the sequence {f(n)} is bounded and suppose without loss of
generality that it is increasing, otherwise replace f(n) with —f(n).

e Since {f(n)} is bounded it has a sup, a. We'll show that this is the
limit.
@ Given € > 0 choose N such that o — f(N) < e.

@ Since f is increasing, and since « is an upper bound, for n > N,
a—e<f(n)<a.
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Convergence of monotonic sequences

Proof.

Now suppose {f(n)} has limit L. Let N be such that n > N implies
|f(n) —L| < 1. Let M = max{|f(n)| : 0 < n < N}. It follows that for all n,

|f(n)] < max{|L]| + 1, M}.

O]

v

Note that in the second part of the proof, monotonicity was not used. A
convergent sequence is bounded.
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Cauchy sequences

Definition

A sequence {an}°2, is Cauchy if, for each € > 0, there exists N > 0 such
that m,n > N implies |a, — am| < €.
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Examples

The sequence {a, = % is Cauchy. To prove this, given € > 0, choose N

such that zl,\, < 5. For m,n > N, by the triangle inequality,

1 1

2m . 2n

<1+1<6+
—2m 2n "9

6_
5 =€
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limsup and liminf

Definition

Let {a,}72, be a bounded sequence. The limit supremum of {a,} is

limsupa, = lim sup{a,: n> N}.
n—o00 N—oco

The limit infimum of {a,} is
liminfa, = lim inf{a,:n> N}.
N—o0

n—o00

Both of these limits exist.
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limsup and liminf

Theorem

Let {a,}72, be a bounded sequence. The limits supremum and infimum of
a, exist.

v

Proof.
@ To check that the limit supremum exists, let |a,| < M and define
sequence {by}3_o by by = sup{a, : n > N}.
@ Observe that |by| < M for all N, since M is an upper bound for

{lan[}-

@ The sequence {by} is decreasing, since if N < M, the sup in by is
taken over a subset of the set in the sup of by.

@ Since {by}R_, is bounded and monotonic, it converges.

The argument for the limit infimum follows on replacing a, with —a,. [
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Completeness of the reals

Theorem

Let {an}02, be a sequence of real numbers. The sequence {an}°°, has a
limit if and only if it is Cauchy.

Proof.

First suppose {a,}7, converges to a limit L. Given € > 0, choose N > 0
such that n > N implies |a, — L| < 5. Then for m,n > N, by the triangle
inequality,

lam — an| = [(am — L) + (L — an)| < |am — L| + |L — an| <€,

so the sequence {a,}7° is Cauchy. O
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Completeness of the reals

Proof.

Next suppose that {a,}52 is a Cauchy sequence. We show that it has a
limit. Observe that the Cauchy property implies that {a,}5°, is bounded.
@ To check this, choose e =1 and let N > 0 be such that m,n > N
implies that |a, — a,| < 1.
@ Thus {a,}7°, is bounded by the maximum of |ayy1| + 1 and the size
of all terms preceding |an+1|, of which there are only finitely many.
O

v
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Completeness of the reals

Proof.

@ Since {a,}02, is bounded, its limit supremum exists, call it o. We
show that the limit of {a,}5% is «, also.

@ Given € > 0, use the Cauchy property to choose N such that
n,m > N implies |a, — am| < 5.

@ Since the sequence by = sup{a, : n > M} decreases to limit «, we
can choose N; > N such that M > N; implies that
a<sup{a,:n> M} <a+5.

@ Choose m > Ny such that a — 5 < am < a + 3.

o It follows that, for n > N,

lan —a| < |(ap— am) + (am — @)| < |ap — am| + |am — o < €.

O

v
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Completeness of the reals

Definition
A metric space in which every Cauchy sequence converges to a limit is
called complete.
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Infinite series

Definition
Given a sequence {a,}%, its sequence of partial sums is the sequence
{sn}52; defined by
n
Sp = Z ak.
k=1

The sequence {s,}°°, is also called an infinite series or series and is

denoted
o0
>
k=1
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Convergence

Definition
Given a sequence {a,}5° ;, the infinite series )7 ; ax converges to the
limit L if the sequence of partial sums {s,}7°; has limit L,
lim s, = L.
n—o0
. . .
In this case we write ) ;°; ax = L.

If > 71 ak does not converge to a finite limit, it is said to diverge.

If lim,_ o0 Sp = 0O We write Ef’zl ax = oo and say that the infinite series
diverges to infinity.
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Properties of convergent series

Theorem

Let {an}2, and {bp}°°; be sequences of complex numbers with
convergent infinite series y ;- ; ax and Y, 4 bx. Then for any complex
numbers o and 3, the sequence {aa, + Bbp}32, has a convergent infinite

series, and
Z(aak T Bbk) = aZak = ,BZ by.
k=1 k=1 k=1

Proof.

Denote {s,}°°;, {tn}, {un}5, the sequences of partial sums of
{an}o2 4, {bn}22; and {aa, + Bbp}22 ;. Then for each n, u, = as, + St,.
By the linearity property of limits,

lim u, =« I|m Sn+ B ||m th.
n—o0

This is the stated result. ]

v
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Properties of convergent series

Theorem

Let {an}52, and {bp}32, be sequences such that >, a, converges, but
>0 b diverges. Then Y, (an + by) diverges. If Y2 | by, = oo then
Y mei(an + by) = 0.

Proof.

The first statement follows immediately from the previous theorem, since if
3¢ 1(an + bn) were convergent, this would imply the convergence of
>0 1 bn. The second statement is straightforward. O

v
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Properties of convergent series

Theorem

Let {an}5°, be a sequence and suppose that > | a, converges. Then
a, — 0 asn— co.

Proof.

Let {s,}7°; be the sequence of partial sums. Since this sum converges, it
is Cauchy. Given € > 0, let N be such that n > m > N implies

|sh — sm| < €. In particular, |amt1| = |Sme1 — Sm| < € s0 a, — 0. O

v
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Examples
o> 2, 2% = 1. To prove this, let m < n and note that the sequence of
partial sums satisfies
n
1 1 1
Sh — Sm = Z 27 = 27m — §
k=m+1

Since this tends to 0 as a function of m the sequence is Cauchy,
hence converges to a limit s. Notice that s =25 —s = 1.

® > 2%, 4 = cc. To check this, note that the partial sums s, satisfy

n+1 n+1
Z / dx / dx ~ log(n+1).
1 X

Thus the sequence of partial sums tends to infinity.

® > %, % + + = co. This now follows from the previous theorem.
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Telescoping series

Let {b,}°2, be a sequence. The sequence {a, = b, — bp41}5, has
sequence of partial sums {s,}°°, given by

n
Sp — Zak = bl — b,,+1.
k=1

This series is called a telescoping series.
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Telescoping series

Theorem

Let {b,}22; and {a, = b, — ba11}7°, be two sequences of complex
numbers. The series ) a, converges if and only if the sequence {b,}° 4
converges, in which case we have

o0
Zan = by — lim b,.
n—oo

n=1
v
Proof.
This follows from the basic properties of limits. O
v
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Example

° > 2, m = 1. To check this, note that the sequence

{an = ﬁ}ﬁil satisfies
1 1

an=— — .
"Tn n+1

The sum now follows from the telescoping property via sequence
{bn =1}
n

n=1"

@ For x a complex number other than a negative integer,

1 _1 1 1
() (ntx+1)(ntx+2) — 2 ((n+x)(n+x+1) - (n+x+1)(n+x+2)) - Thus, by
the telescoping property, since m tends to 0 as n — oo,

[e.e]

1 1
nz_;(n+x)(n+x+1)(n+x+2) T2+ 1)(x+2)
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Example

@ The series ) 77, log 47 diverges to negative infinity, since
n

log .77 = logn— log(n+ 1), and the series telescopes.
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Geometric series

Theorem

If x is complex and |x| < 1, the geometric series ;) x" converges and

I+x+x°+x3+..=

1—x’

If x| > 1 the series diverges.
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Geometric series

Proof.
The sequence of partial sums s, satisfies
1—x"t1
s,,:1+x+x2—|—...+x":{ 1—x e
n X =
This converges, with value =, if and only if |x| < 1. DJ
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Examples
For |x| < 1,
@ Replacing x with x? obtains

1
I+ 4+ X"+ X"+ = :
1—x2
o Multiplying by x,
x+x3 x5t = %
1—x
@ Replacing x with —x obtains
1
1—x+x2=x3 4+ (-1)"x"+..= .
14 x
@ Replacing x by x? obtains
1
-2+ x =+ (-1)"x* 4. = ——.
Dl + (—1)"x"" + T2
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Alternating series

Definition
A sequence {an}°; is said to be alternating if, for all n > 1, apa,11 < 0.

Theorem

Let {an}0°; be an alternating sequence and suppose that {|a,|}7; is
decreasing and tends to 0. Then Y ", a, = L converges to a finite limit,
and, for each N > 1,
N
L=
n=1

< lan+1]-
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Alternating series

Proof.
Without loss of generality, assume that a; > 0. Otherwise, multiply the
sequence by —1.

o Since |az2n| > |a2n41| > |a2n+2| and azp, a2p12 < 0 while azn41 > 0, it
follows that the partial sums satisfy

S| > S3 >S5 2> ..y 2 <53 <56 < ..y

and, for all n > 1, s;p—1 > sop and sp, < Sopta-

o It follows that, for all N > 2n, s>, < sy < spp—1. Since the odd
partial sums are decreasing and bounded below, they converge to a

limit 0. Since the even partial sums are increasing and bounded above
they converge to a limit e.

O

v
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Alternating series

Proof.
@ One has, for any n, sp, < e < 0 < spp_1. Since |spp—1 — S| — 0 as
n— 00, 0=e.

@ These inequalities show that |s, — o] < |sp4+1 — Sp| = |an+1] as
required.
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Absolute convergence

Definition
Let {a,}52; be a sequence. The series Y 7, a, is said to converge
absolutely if the series Y7 ; |ap| converges.
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Absolute convergence

Theorem

Let {an}52, be a sequence of complex numbers. If the series converges
absolutely then it converges. The converse is false.
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Absolute convergence

Proof.
o Let {s,}°°; and {t,}52; denote the sequence of partial sums of
{an}n2y and {[an|}72y, that is, sp = DTk ak, to =Dk |akl.
@ Since the sequence {t,} converges, it is Cauchy.
@ Given € > 0, choose N sufficiently large so that m > n > N implies
that |tm — tn| < €. By the triangle inequality,

n

2.

k=m+1

n

< )l =ltm—tal <€

k=m+1

|Sm — sn| =

This proves that {s,}7; is Cauchy, and hence converges.
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Absolute convergence

Proof.

To prove that the converse does not hold, note that Y7 ; -
by the alternating series criteria, but does not converge absolutely, since

we've already checked that Y72 ; % = oo.

1
)" converges

O]
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Rearrangement

Definition
A rearrangement of the natural numbers is a bijective map 7 : N — N. A

rearrangement of the sequence {a,}72 is a sequence {ar(n)};2, where m
is a rearrangement of the natural numbers.
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Absolute convergence

Theorem

Let {ap}2, be a sequence, and suppose that y_ >, a, = L converges
absolutely to a finite limit. Then for any rearrangement w of N,

Z aﬁ(n) = L.
n=0
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Absolute convergence

Proof.

o Let 7(n) denote the first number m such that
{0,1,2,...,n} C {n(0),7(1),...,7(m)}.
@ Let o(n) denote the maximum number among {7(0), 7(1), ..., w(n)}.
@ Given € > 0,
Since the sequence of partial sums of |a,| is Cauchy, choose N; such
that Ny < m < nimplies >} . |a] < §
Choose N, such that m > N, implies |L — ZTZI ak| <5
Let N = max(Nl, N2)

e For n > 7(N), by the triangle inequality,

Za«w Zak

<z +
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Absolute convergence
Proof.

@ Recall that {0,1,2,..., N} C {n(0),n(1),...,7(7(N))} and
o(n) = max{m(0),...,7(n)}. Hence, by the triangle inequality and the

Cauchy property,

n N
Z (k) Z k| = Z ar (k)
k=0 k=0

0<k<n,m(k)>N
Z ‘aﬂ(k)’
0<k<n,m(k)>N
o(n)

< Y lad <3

k=N+1

IN

It follows that ’ZZ:O ar(k) — L! < % s % — €.

November 14, 2016

40 / 44



Absolute convergence

Theorem (Riemann)

Let {an}52, be a real sequence and suppose that 7 a, is convergent,
but not absolutely convergent. For any real number « there is a
rearrangement of the natural numbers m, such that

Z aﬂ(n) = Q.
n=0
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Absolute convergence

Proof.

e Denote a” = max{a,,0} and a, = min{a,,0}. Thus {a}} isa
sequence of non-negative terms and {a; } is a sequence of
non-positive terms.

@ We have that Y af and Y, a, both diverge. To check this, note
that it is impossible that one diverges and the other converges, since
S~ an,=>.(a} + a,) converges. It is also impossible that both
converge, since > |a,| =, (af — a,,) diverges.
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Absolute convergence

Proof.

@ Determine the rearrangement 7 as follows. If & > 0, let 7(0) be the
index of the first non-negative term in {a,}, otherwise the index of
the first negative term. For n > 0, if Zz;é ar(k) < a then let 7(n) be
the first unused index of a non-negative term, otherwise the first
unused index of a negative term.

@ Since both the sum of the non-negative and negative terms diverge,
the function 7 alternates between taking non-negative and negative
terms infinitely often, and in particular takes on all natural numbers,
hence is genuinely a rearrangement.

0J

v
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Absolute convergence

Proof.

o Lets, =3 4 ar(k) denote the sequence of partial sums. If s, —
and sp41 — « have the same sign, then |s,11 — a| < [s, — al. If they
have opposite signs, then [s,11 — a| < [sp11 — S| = |ax(as)l- In
particular, for all n, [s, — a| < [ar(s(n))| Where o(n) is the last index
before n where the sign of s, — a changed.

@ We have 7(n) — oo as n — oo since 7 is a bijection, and o(n) — oo
as n — oo, since there are infinitely many sign changes. Hence
7(o(n)) — oo as n — 0.

@ Since a, — 0 by convergence of > a,, and 7(o(n)) — oo, the
convergence to « follows.
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