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Sequences

Recall the definition of a sequence.

Definition

A sequence {an}∞n=1 is a function a whose domain is the positive integers.

Sequences are often written beginning at either index 0 or 1.
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Examples

The sequence {an = 1
n}
∞
n=1 begins

1,
1

2
,

1

3
,

1

4
,

1

5
, ....

The sequence of powers of 2 {an = 2n}∞n=0 begins

1, 2, 4, 8, 16, 32, 64, ....

The sequence {sin(πn/2)}∞n=1 begins

1, 0,−1, 0, 1, 0,−1, 0, 1, 0,−1, ....
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Limits

Definition

A sequence {an}∞n=0 has limit L if, for each ε > 0, there is N ≥ 0 such that
n > N implies

|an − L| < ε.

A sequence {an}∞n=0 has limit ∞ if, for each M > 0 there is N ≥ 0 such
that n > N implies an > M.
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Examples

If α > 0, limn→∞
1
nα = 0.

limn→∞ xn =


0 |x | < 1
1 x = 1

Does not exist x = −1
∞ x > 1

.

limn→∞
(
1 + a

n

)n
= ea.
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Monotonic sequences

Definition

A sequence {f (n)}∞n=0 is increasing if for all n,

f (n + 1) ≥ f (n),

and decreasing if for all n,

f (n + 1) ≤ f (n).

The sequence is monotonic if it is increasing or decreasing.
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Convergence of monotonic sequences

Theorem

A monotonic sequence is convergent if and only if it is bounded.

Proof.

First suppose the sequence {f (n)} is bounded and suppose without loss of
generality that it is increasing, otherwise replace f (n) with −f (n).

Since {f (n)} is bounded it has a sup, α. We’ll show that this is the
limit.

Given ε > 0 choose N such that α− f (N) < ε.

Since f is increasing, and since α is an upper bound, for n > N,
α− ε < f (n) ≤ α.
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Convergence of monotonic sequences

Proof.

Now suppose {f (n)} has limit L. Let N be such that n > N implies
|f (n)−L| < 1. Let M = max{|f (n)| : 0 ≤ n ≤ N}. It follows that for all n,

|f (n)| ≤ max{|L|+ 1,M}.

Note that in the second part of the proof, monotonicity was not used. A
convergent sequence is bounded.
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Cauchy sequences

Definition

A sequence {an}∞n=0 is Cauchy if, for each ε > 0, there exists N > 0 such
that m, n > N implies |an − am| < ε.
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Examples

The sequence {an = 1
2n } is Cauchy. To prove this, given ε > 0, choose N

such that 1
2N
< ε

2 . For m, n > N, by the triangle inequality,∣∣∣∣ 1

2m
− 1

2n

∣∣∣∣ ≤ 1

2m
+

1

2n
<
ε

2
+
ε

2
= ε.
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limsup and liminf

Definition

Let {an}∞n=0 be a bounded sequence. The limit supremum of {an} is

lim sup
n→∞

an = lim
N→∞

sup{an : n > N}.

The limit infimum of {an} is

lim inf
n→∞

an = lim
N→∞

inf{an : n > N}.

Both of these limits exist.
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limsup and liminf

Theorem

Let {an}∞n=0 be a bounded sequence. The limits supremum and infimum of
an exist.

Proof.

To check that the limit supremum exists, let |an| ≤ M and define
sequence {bN}∞N=0 by bN = sup{an : n > N}.
Observe that |bN | ≤ M for all N, since M is an upper bound for
{|an|}.
The sequence {bN} is decreasing, since if N < M, the sup in bM is
taken over a subset of the set in the sup of bN .

Since {bN}∞N=0 is bounded and monotonic, it converges.

The argument for the limit infimum follows on replacing an with −an.
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Completeness of the reals

Theorem

Let {an}∞n=0 be a sequence of real numbers. The sequence {an}∞n=0 has a
limit if and only if it is Cauchy.

Proof.

First suppose {an}∞n=0 converges to a limit L. Given ε > 0, choose N > 0
such that n > N implies |an − L| < ε

2 . Then for m, n > N, by the triangle
inequality,

|am − an| = |(am − L) + (L− an)| ≤ |am − L|+ |L− an| < ε,

so the sequence {an}∞n=0 is Cauchy.
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Completeness of the reals

Proof.

Next suppose that {an}∞n=0 is a Cauchy sequence. We show that it has a
limit. Observe that the Cauchy property implies that {an}∞n=0 is bounded.

To check this, choose ε = 1 and let N > 0 be such that m, n > N
implies that |am − an| < 1.

Thus {an}∞n=0 is bounded by the maximum of |aN+1|+ 1 and the size
of all terms preceding |aN+1|, of which there are only finitely many.
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Completeness of the reals

Proof.

Since {an}∞n=0 is bounded, its limit supremum exists, call it α. We
show that the limit of {an}∞n=0 is α, also.

Given ε > 0, use the Cauchy property to choose N such that
n,m > N implies |an − am| < ε

2 .

Since the sequence bM = sup{an : n > M} decreases to limit α, we
can choose N1 > N such that M > N1 implies that
α ≤ sup{an : n > M} < α + ε

2 .

Choose m > N1 such that α− ε
2 < am < α + ε

2 .

It follows that, for n > N,

|an − α| ≤ |(an − am) + (am − α)| ≤ |an − am|+ |am − α| < ε.
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Completeness of the reals

Definition

A metric space in which every Cauchy sequence converges to a limit is
called complete.
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Infinite series

Definition

Given a sequence {an}∞n=1, its sequence of partial sums is the sequence
{sn}∞n=1 defined by

sn =
n∑

k=1

ak .

The sequence {sn}∞n=1 is also called an infinite series or series and is
denoted

∞∑
k=1

ak .
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Convergence

Definition

Given a sequence {an}∞n=1, the infinite series
∑∞

k=1 ak converges to the
limit L if the sequence of partial sums {sn}∞n=1 has limit L,

lim
n→∞

sn = L.

In this case we write
∑∞

k=1 ak = L.
If
∑∞

k=1 ak does not converge to a finite limit, it is said to diverge.
If limn→∞ sn =∞ we write

∑∞
k=1 ak =∞ and say that the infinite series

diverges to infinity.
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Properties of convergent series

Theorem

Let {an}∞n=1 and {bn}∞n=1 be sequences of complex numbers with
convergent infinite series

∑∞
k=1 ak and

∑∞
k=1 bk . Then for any complex

numbers α and β, the sequence {αan + βbn}∞n=1 has a convergent infinite
series, and

∞∑
k=1

(αak + βbk) = α

∞∑
k=1

ak + β

∞∑
k=1

bk .

Proof.

Denote {sn}∞n=1, {tn}∞n=1, {un}∞n=1 the sequences of partial sums of
{an}∞n=1, {bn}∞n=1 and {αan + βbn}∞n=1. Then for each n, un = αsn + βtn.
By the linearity property of limits,

lim
n→∞

un = α lim
n→∞

sn + β lim
n→∞

tn.

This is the stated result.
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Properties of convergent series

Theorem

Let {an}∞n=1 and {bn}∞n=1 be sequences such that
∑∞

n=1 an converges, but∑∞
n=1 bn diverges. Then

∑∞
n=1(an + bn) diverges. If

∑∞
n=1 bn =∞ then∑∞

n=1(an + bn) =∞.

Proof.

The first statement follows immediately from the previous theorem, since if∑∞
n=1(an + bn) were convergent, this would imply the convergence of∑∞
n=1 bn. The second statement is straightforward.
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Properties of convergent series

Theorem

Let {an}∞n=1 be a sequence and suppose that
∑∞

n=1 an converges. Then
an → 0 as n→∞.

Proof.

Let {sn}∞n=1 be the sequence of partial sums. Since this sum converges, it
is Cauchy. Given ε > 0, let N be such that n > m > N implies
|sn − sm| < ε. In particular, |am+1| = |sm+1 − sm| < ε so am → 0.
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Examples∑∞
k=1

1
2k

= 1. To prove this, let m < n and note that the sequence of
partial sums satisfies

sn − sm =
n∑

k=m+1

1

2k
=

1

2m
− 1

2n
.

Since this tends to 0 as a function of m the sequence is Cauchy,
hence converges to a limit s. Notice that s = 2s − s = 1.∑∞

k=1
1
k =∞. To check this, note that the partial sums sn satisfy

sn =
n∑

k=1

1

k
=

∫ n+1

1

dx

bxc
>

∫ n+1

1

dx

x
= log(n + 1).

Thus the sequence of partial sums tends to infinity.∑∞
k=1

1
2k

+ 1
k =∞. This now follows from the previous theorem.
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Telescoping series

Let {bn}∞n=1 be a sequence. The sequence {an = bn − bn+1}∞n=1 has
sequence of partial sums {sn}∞n=1 given by

sn =
n∑

k=1

ak = b1 − bn+1.

This series is called a telescoping series.
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Telescoping series

Theorem

Let {bn}∞n=1 and {an = bn − bn+1}∞n=1 be two sequences of complex
numbers. The series

∑
an converges if and only if the sequence {bn}∞n=1

converges, in which case we have

∞∑
n=1

an = b1 − lim
n→∞

bn.

Proof.

This follows from the basic properties of limits.

Bob Hough Math 141: Lecture 18 November 14, 2016 24 / 44



Example∑∞
n=1

1
n(n+1) = 1. To check this, note that the sequence

{an = 1
n(n+1)}

∞
n=1 satisfies

an =
1

n
− 1

n + 1
.

The sum now follows from the telescoping property via sequence
{bn = 1

n}
∞
n=1.

For x a complex number other than a negative integer,
1

(n+x)(n+x+1)(n+x+2) = 1
2

(
1

(n+x)(n+x+1) −
1

(n+x+1)(n+x+2)

)
. Thus, by

the telescoping property, since 1
(n+x)(n+x+1) tends to 0 as n→∞,

∞∑
n=1

1

(n + x)(n + x + 1)(n + x + 2)
=

1

2(x + 1)(x + 2)
.
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Example

The series
∑∞

n=1 log n
n+1 diverges to negative infinity, since

log n
n+1 = log n − log(n + 1), and the series telescopes.
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Geometric series

Theorem

If x is complex and |x | < 1, the geometric series
∑∞

n=0 xn converges and

1 + x + x2 + x3 + ... =
1

1− x
.

If |x | ≥ 1 the series diverges.
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Geometric series

Proof.

The sequence of partial sums sn satisfies

sn = 1 + x + x2 + ...+ xn =

{
1−xn+1

1−x x 6= 1

n x = 1
.

This converges, with value 1
1−x , if and only if |x | < 1.
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Examples
For |x | < 1,

Replacing x with x2 obtains

1 + x2 + x4 + ...+ x2n + ... =
1

1− x2
.

Multiplying by x ,

x + x3 + x5 + ...+ x2n+1 + ... =
x

1− x2
.

Replacing x with −x obtains

1− x + x2 − x3 + ...+ (−1)nxn + ... =
1

1 + x
.

Replacing x by x2 obtains

1− x2 + x4 − ...+ (−1)nx2n + ... =
1

1 + x2
.
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Alternating series

Definition

A sequence {an}∞n=1 is said to be alternating if, for all n ≥ 1, anan+1 ≤ 0.

Theorem

Let {an}∞n=1 be an alternating sequence and suppose that {|an|}∞n=1 is
decreasing and tends to 0. Then

∑∞
n=1 an = L converges to a finite limit,

and, for each N ≥ 1, ∣∣∣∣∣L−
N∑

n=1

an

∣∣∣∣∣ ≤ |aN+1|.
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Alternating series

Proof.

Without loss of generality, assume that a1 ≥ 0. Otherwise, multiply the
sequence by −1.

Since |a2n| ≥ |a2n+1| ≥ |a2n+2| and a2n, a2n+2 ≤ 0 while a2n+1 ≥ 0, it
follows that the partial sums satisfy

s1 ≥ s3 ≥ s5 ≥ ..., s2 ≤ s4 ≤ s6 ≤ ...,

and, for all n ≥ 1, s2n−1 ≥ s2n and s2n ≤ s2n+1.

It follows that, for all N > 2n, s2n ≤ sN ≤ s2n−1. Since the odd
partial sums are decreasing and bounded below, they converge to a
limit o. Since the even partial sums are increasing and bounded above
they converge to a limit e.
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Alternating series

Proof.

One has, for any n, s2n ≤ e ≤ o ≤ s2n−1. Since |s2n−1 − s2n| → 0 as
n→∞, o = e.

These inequalities show that |sn − o| ≤ |sn+1 − sn| = |an+1| as
required.
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Absolute convergence

Definition

Let {an}∞n=1 be a sequence. The series
∑∞

n=1 an is said to converge
absolutely if the series

∑∞
n=1 |an| converges.
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Absolute convergence

Theorem

Let {an}∞n=1 be a sequence of complex numbers. If the series converges
absolutely then it converges. The converse is false.
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Absolute convergence

Proof.

Let {sn}∞n=1 and {tn}∞n=1 denote the sequence of partial sums of
{an}∞n=1 and {|an|}∞n=1, that is, sn =

∑n
k=1 ak , tn =

∑n
k=1 |ak |.

Since the sequence {tn} converges, it is Cauchy.

Given ε > 0, choose N sufficiently large so that m > n > N implies
that |tm − tn| < ε. By the triangle inequality,

|sm − sn| =

∣∣∣∣∣
n∑

k=m+1

ak

∣∣∣∣∣ ≤
n∑

k=m+1

|ak | = |tm − tn| < ε.

This proves that {sn}∞n=1 is Cauchy, and hence converges.
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Absolute convergence

Proof.

To prove that the converse does not hold, note that
∑∞

k=1
(−1)k

k converges
by the alternating series criteria, but does not converge absolutely, since
we’ve already checked that

∑∞
k=1

1
k =∞.
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Rearrangement

Definition

A rearrangement of the natural numbers is a bijective map π : N→ N. A
rearrangement of the sequence {an}∞n=0 is a sequence {aπ(n)}∞n=0 where π
is a rearrangement of the natural numbers.
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Absolute convergence

Theorem

Let {an}∞n=0 be a sequence, and suppose that
∑∞

n=0 an = L converges
absolutely to a finite limit. Then for any rearrangement π of N,

∞∑
n=0

aπ(n) = L.
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Absolute convergence

Proof.

Let τ(n) denote the first number m such that
{0, 1, 2, ..., n} ⊂ {π(0), π(1), ..., π(m)}.
Let σ(n) denote the maximum number among {π(0), π(1), ..., π(n)}.
Given ε > 0,

I Since the sequence of partial sums of |an| is Cauchy, choose N1 such
that N1 ≤ m < n implies

∑n
k=m+1 |ak | <

ε
2

I Choose N2 such that m ≥ N2 implies
∣∣L−∑m

k=1 ak
∣∣ < ε

2 .
I Let N = max(N1,N2).

For n > τ(N), by the triangle inequality,∣∣∣∣∣
n∑

k=0

aπ(k) − L

∣∣∣∣∣ < ε

2
+

∣∣∣∣∣
n∑

k=0

aπ(k) −
N∑

k=0

ak

∣∣∣∣∣

Bob Hough Math 141: Lecture 18 November 14, 2016 39 / 44



Absolute convergence

Proof.

Recall that {0, 1, 2, ...,N} ⊂ {π(0), π(1), ..., π(τ(N))} and
σ(n) = max{π(0), ..., π(n)}. Hence, by the triangle inequality and the
Cauchy property,∣∣∣∣∣

n∑
k=0

aπ(k) −
N∑

k=0

ak

∣∣∣∣∣ =

∣∣∣∣∣∣
∑

0≤k≤n,π(k)>N

aπ(k)

∣∣∣∣∣∣
≤

∑
0≤k≤n,π(k)>N

|aπ(k)|

≤
σ(n)∑

k=N+1

|ak | <
ε

2

It follows that
∣∣∑n

k=0 aπ(k) − L
∣∣ < ε

2 + ε
2 = ε.

Bob Hough Math 141: Lecture 18 November 14, 2016 40 / 44



Absolute convergence

Theorem (Riemann)

Let {an}∞n=0 be a real sequence and suppose that
∑∞

n=0 an is convergent,
but not absolutely convergent. For any real number α there is a
rearrangement of the natural numbers π, such that

∞∑
n=0

aπ(n) = α.
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Absolute convergence

Proof.

Denote a+n = max{an, 0} and a−n = min{an, 0}. Thus {a+n } is a
sequence of non-negative terms and {a−n } is a sequence of
non-positive terms.

We have that
∑

n a+n and
∑

n a−n both diverge. To check this, note
that it is impossible that one diverges and the other converges, since∑

an =
∑

(a+n + a−n ) converges. It is also impossible that both
converge, since

∑
n |an| =

∑
n(a+n − a−n ) diverges.
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Absolute convergence

Proof.

Determine the rearrangement π as follows. If α > 0, let π(0) be the
index of the first non-negative term in {an}, otherwise the index of
the first negative term. For n > 0, if

∑n−1
k=0 aπ(k) < α then let π(n) be

the first unused index of a non-negative term, otherwise the first
unused index of a negative term.

Since both the sum of the non-negative and negative terms diverge,
the function π alternates between taking non-negative and negative
terms infinitely often, and in particular takes on all natural numbers,
hence is genuinely a rearrangement.
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Absolute convergence

Proof.

Let sn =
∑n

k=0 aπ(k) denote the sequence of partial sums. If sn − α
and sn+1 − α have the same sign, then |sn+1 − α| ≤ |sn − α|. If they
have opposite signs, then |sn+1 − α| < |sn+1 − sn| = |aπ(n+1)|. In
particular, for all n, |sn − α| ≤ |aπ(σ(n))| where σ(n) is the last index
before n where the sign of sm − α changed.

We have π(n)→∞ as n→∞ since π is a bijection, and σ(n)→∞
as n→∞, since there are infinitely many sign changes. Hence
π(σ(n))→∞ as n→∞.

Since an → 0 by convergence of
∑

an, and π(σ(n))→∞, the
convergence to α follows.
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