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Simple harmonic motion

Recall from last class:
@ Simple harmonic motion is described by the equation y” = —k?y.
@ The solutions of the equation take the form cj sin kx 4+ ¢, cos kx.

@ Using the trigonometric identity sin(a + ) = sin «wcos 8 + cos acsin 3,
the general solution may be written in the form Csin(kx + o)) with C
and « as parameters.
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Force fields

A force field describes the force experienced by a particle as it moves
through space and time.

o We'll consider force fields which are time independent. Thus the force
field is a function F(x, x") which depends only upon the particle’s
position and possibly it's velocity.

@ We assume that the particle’s mass is constant. Thus Newton's
second law gives x” = L F(x, x’). This is a second order differential
equation for position.
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Gravity

@ In Newtonian mechanics, given point masses p; and p of masses m;
and mp, at distance r apart, the point masses exert a gravitational
force towards each other

mymy
2

F=G

G is the gravitational constant.
@ A body with spherical symmetry of its mass behaves like an equal
point mass at its center.

@ In problems treating free-fall near the Earth’s surface, the factor r? is
dominated by the Earth’s radius, and is typically treated as a
constant, so that the gravitational force is approximated as F = gm.
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Gravity

lines of equal field strength
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Electromagnetism

@ Charged particles p; and p> at distance r, carrying charges e; and e
(signed quantities) exert an electrostatic force towards each other of

where € is the electrostatic constant.

@ The signed quantity indicates that like-charged particles repell while
opposite charges attract.

@ In typical experiments with charged particles, the electrostatic force
overwhelms the gravitational attraction between the particles, so that
gravity is ignored.
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A spring

According to Hooke's Law, a mass on the end of a coiled spring

experiences a force proportional and opposite the displacement of the
spring from its relaxed position.
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A spring

Hooke's law is an example of a general phenomenon which occurs when a
system is perturbed from it's natural resting state (equilibrium). This
phenomenon, simple harmonic motion, mostly explains why many physical
objects have a constant vibration. Do you have a tremor?
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Fields with friction

Friction of various kinds, including resistance in electric circuits, air
resistance when falling, and friction when passing over a surface, is always
in the direction opposite motion, and is assumed proportional to the
magnitude of velocity.
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Fields with friction
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Equilibria

Definition
An equilibrium point in a force field is a point x such that F(x,0) = 0. J

At an equilibrium point x, the constant solution x(t) = x exists for all
time.
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Types of equilibria

Definition

The equilibrium point xg in a force field F is stable if the trajectory x(t) of
a unit mass particle in F satisfies the following. For every € > 0 there
exists 0 > 0 such that if at time 0, d((x(0),x’(0)) — (xo,0)) < &, then for
all t > 0, |x(t) — x| < e.

Definition
The equilibrium points xg is asymptotically stable if there exists § > 0 such
that if at time 0, d((x(0), x’(0)) — (x0,0)) < 4, then lim¢_,o x(t) = xo.

Definition
An equilibrium point which is not stable is called unstable.
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Examples

@ The field F(x) = —k2x has an equilibrium at 0. Solutions near the
equilibrium generate harmonic oscillation. The solutions are stable,
but not asymptotically stable.

o The field F(x,x') = —k?x — 2k3x' also has an equilibrium at 0.
Solutions near the equilibrium exhibit damped harmonic oscillation.
The equilibrium is asymptotically stable.
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Pendulum

Consider a simple frictionless pendulum, which consists of a weightless rod
with a mass (bob) at its end, constrained to rotate in a fixed vertical plane.

== | b=
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Pendulum

@ The pendulum experiences a downward force of gravity, assumed
constant, and the force of tension which keeps the weight on the end
of the rod.

@ At an angle 8 from its downward vertical resting position, the
tangential force on the pendulum is proportional to sin 8.

@ The angular displacement satisfies the differential equation
0" = —ksin6.
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Pendulum

@ The pendulum has two equilibrium points, in the upward and
downward pointing directions, where the force vanishes.

@ The upward pointing equilibrium is unstable, as a small displacement
to either side causes the pendulum to accelerate downward.

@ The downward pointing equilibrium is stable, but not asymptotically
stable.

@ Introducing friction into the rotation causes the stable equilibrium to
become asymptotically stable.

To check these claims requires calculation.
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Simple harmonic approximation

@ Making the small angle approximation sin § = 6, one obtains the
approximate differential equation of simple harmonic motion

0" = —k?6.

@ This obtains the solutions 6(t) = Csin(kt + «),
0'(t) = Ck cos(kt + «).

e Given initial condition (6(0),6(0)), C > 0 is determined by
2 = 9(0)2 + 1O,

@ The amplitude C tends to 0 as the initial conditions #(0) and ¢'(0)
tend to 0.
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Solution of the non-linear pendulum equation

@ When the initial conditions have a small displacement from the stable
equilibrium, an exact solution of the motion of the non-linear
equation 0”(t) = —k?sinf(t) can be given as an infinite expansion

6(t)=C (sin(l?(t + t9)) + e3sin(3k(t + to)) + €5 sin(5k(t + tg)) + )

where k = k (1 + % (sin2 97’" + 2—2 sin’ 97’" + )) and where 0, is the
maximum displacement.

@ We won't treat infinite series of functions until later in the course, so
we'll postpone the derivation of this result for now.

o Note that 6(t) is periodic with period 27” and thus the stable
equilibrium is not asymptotically stable.
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Behaviors near equilibria in a constant force field

Theorem

Suppose a force field F(x) is twice continuously differentiable as a function
of x. Let x be an equilibrium point of F.

o If F'(x) > 0 then the equilibrium is unstable.
o If F'(x) < O then the equilibrium is stable.

Bob Hough Math 141: Lecture 17 November 9, 2016 20 / 27



Behaviors near equilibria in a constant force field

Proof.
@ The proof of the stability citerion is a little involved, but is covered in
a rigorous course treating ODE's.
@ To prove the instability criterion, assume without loss of generality
that x = 0, and Taylor expand F to obtain that in a neighborhood of
0, F(y) = F'(0)y + O(y?).
@ Thus thereis a 0 > 0, such that if 0 <y <9, F(y) > @y.
@ Let 0 < xp < 0 and let x(t) be the trajectory of a particle started
from rest at x(0) = xp in the field F.
o Let X(t) be the trajectory of a particle started from rest at x(0) = 2
in the field F(y) = 2y
DJ
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Behaviors near equilibria in a constant force field

Proof.
e We claim that, for all t such that 0 < x(t) < 4, x(t) > X(t).
@ Suppose otherwise, and let tyg > 0 be

to = inf{t > 0: x(t) < 0 and x(t) < X(t)}.

For all 0 < t < tp, x(t) > X(t), whence x"(t) > X”(t) and thus, for

0 <t <ty xX'(t) > x(t). It follows from the Mean Value Theorem

that x(tg) > X(to). By continuity, x(t) > X(t) in a neighborhood of

tg, a contradiction.

@ The equation X(t) has solution 7 ( VFE©)/2 4 o=tV F( )/2) , which

tends to oo with increasing t.
@ Since X(t) > § eventually, x(t) > § eventually.
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Two fixed charges

Consider two fixed positive charges on the x axis, say at x =1 and
x = —1, and a third particle with charge ¢ constrained to move along the
y axis. At position y, the particle experiences a vertical force of magnitude

proportional to ﬁ The point y = 0 is an equilibrium. It is stable if
1+y2)2
the particle is negatively charged, and unstable if positively charged.
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Driven harmonic motion

Driven harmonic motion occurs when an external periodic force is
introduced which ordinarily exhibits harmonic motion. Examples include

@ A bridge that oscillates under marching soldiers.
@ A tuning fork that vibrates when introduced to a sound wave.

@ A child who drives a swing by pumping his legs.
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Driven harmonic motion

Recall that the damped harmonic oscillation equation
X" +2ax' + b?°x =0
has solutions in 0 < a < b given by (d? = b?> — a?) given by
x(t) = Ce ?'sin(dt + a),

where C and « are parameters. These solutions vanish in the large time
limit.
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Driven harmonic motion

The equation of driven harmonic motion is
X" +2ax’ + b*x = Acos(wt).

One guesses a particular solution of shape Bsin(wt + §), since derivatives
are phases of the same frequency, and adding them is a translation in time
and dilation in amplitude. One can check that a solution is given by

x(t) = A sm(wt + ),

G= \/ 2 4 43%w?

1 2aw

d = cos
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Driven harmonic motion

Recall
x(t) = A sm(wt +9),

G = \/ 2+ 43202

@ Note that as w — b and a — 0, G — 0 so the amplitude tends to
infinity. This phenomenon is called ‘resonance’.

@ The choice of w which minimizes G is called the ‘resonant frequency’
of the system. Resonance must be considered when doing failure
analysis of physical systems.
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