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First order equations

Definition

A first order differential equation is an equation of the form

y ′ = f (x , y).

An initial condition is a condition of type y(x0) = y0.
A solution of this equation is a function Y = Y (x) such that, for all x ,

Y ′(x) = f (x ,Y (x))

and Y (x0) = y0.
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Examples

If f (x , y) is independent of y , then the differential equation is solved by
integration (still not necessarily easy).

If y ′ = Q(x) then y =
∫

Q(x)dx + C .

If Y ′(t) = 2 sin t then Y (t) = −2 cos t + C .
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First-order linear diff eq

Definition

A first-order linear differential equation is an equation of form

y ′ + P(x)y = Q(x).

The equation is called homogeneous if Q(x) = 0.

The most famous first-order linear ode is y ′ = y , which has solution
y(x) = Cex .
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First-order linear diff eq

Theorem

Let P be continuous on an open interval I , and let a ∈ I . The initial value
problem

y ′ + P(x)y = 0, y(a) = b

has the unique solution

y(x) = be−A(x), A(x) =

∫ x

a
P(t)dt.

Proof.

We first check that this is a solution. One has A(a) = 0, so
y(a) = be0 = b as wanted.
Differentiation yields y ′(x) = −be−A(x)A′(x) = −y(x)P(x) so
y ′(x) + P(x)y(x) = 0 as wanted.
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First-order linear diff eq

Proof.

Suppose that g(x) is another solution, solving g ′(x) + P(x)g(x) = 0 and
g(a) = b. Consider h(x) = eA(x)g(x). Then

h′(x) = eA(x)A′(x)g(x)+eA(x)g ′(x) = eA(x)g(x)P(x)−eA(x)g(x)P(x) = 0

so h is a constant. Since h(a) = b, it follows that g(x) = be−A(x).
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First-order linear diff eq

Theorem

Let P and Q be continuous on an open interval I and let a ∈ I . The
unique solution to the equation

y ′ + P(x)y = Q(x), f (a) = b,

is given by

f (x) = be−A(x) + e−A(x)
∫ x

a
Q(t)eA(t)dt,

where A(x) =
∫ x
a P(t)dt.
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First-order linear diff eq

Proof.

We first check that f (x) is a solution.

f ′(x) = −P(x)be−A(x) − P(x)e−A(x)
∫ x

a
Q(t)eA(t)dt + Q(x).

Thus f ′(x) + P(x)f (x) = Q(x), as wanted.
To check that the solution is unique, let g(x) be a solution, and set
h(x) = eA(x)g(x). Then

h′(x) = eA(x)
(
P(x)g(x) + g ′(x)

)
= eA(x)Q(x).

Thus

h(x) = h(a) +

∫ x

a
eA(t)Q(t)dt.
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Example

Problem

Find all solutions to the equation

xy ′ + (1− x)y = e2x

on the interval (0,∞).
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Example

Solution

Divide by x to obtain the equation

y ′ +

(
1

x
− 1

)
y =

e2x

x
.

Let a = 1 to obtain A(x) = log x − (x − 1). Thus a particular solution is
given by

e−A(x)
∫ x

1

e2t

t
eA(t)dt =

ex−1

x

∫ x

1

e2t

t
te1−tdt =

ex

x

∫ x

1
etdt =

e2x − ex+1

x
.

The general solution becomes

f (x) = C
ex

x
+

e2x

x

where C is an arbitrary parameter.
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Radioactive decay

A radioactive substance decays in such a way that the rate of decay is
proportional to the amount present.

Let y = f (t) denote the amount of material present at time t. Thus
there is a constant k such that

y ′ = −ky .

The solution of this equation is f (t) = f (0)e−kt .
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Falling body in a resisting medium

A body falling from large height experiences the downward force mg
of the Earth’s gravity (assumed proportional to its mass), and the
upward force of air resistance −kv proportional to its velocity (k is a
constant).

By Newton’s second law, the velocity function v(t) satisfies

mv ′ = mg − kv ⇔ v ′ +
k

m
v = g .

Assuming that v(0) = 0, the velocity is obtained as

v(t) = e−kt/m
∫ t

0
geku/mdu =

mg

k
(1− e−kt/m).
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A cooling problem

The rate of change in a body’s temperature is proportional to the
difference in its temperature and the surrounding medium.

If y = f (t) denotes the body’s temperature at time t and M(t) the
medium’s temperature then

y ′ = −k[y −M(t)] ⇔ y ′ + ky = kM(t).

Thus f (t) = be−kt + e−kt
∫ t
0 kM(u)ekudu.
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Dilution

A tank contains 100 gallons of brine of concentration 2.5 pounds of
salt per gallon. Brine containing 2 pounds of salt per gallon runs into
the tank at a rate of 5 gallons per minute, and the mixture (assumed
uniform) pours out at the same rate.

The salt content at time t is y = f (t) (net pounds of salt) and
satisfies the equation

y ′ = 10− y

20
⇔ y ′ +

y

20
= 10, y(0) = 250.

The solution is given by

y(t) = 250e−t/20 + e−t/20
∫ t

0
10eu/20du = 200 + 50e−t/20.
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Circuits

A circuit of constant inductance L and resistance R has voltage V (t)
and current I (t) which vary with time, and satisfy the differential
equation

LI ′(t) + RI (t) = V (t).

The solution to this differential equation is given by

I (t) = I (0)e−Rt/L + e−Rt/L
∫ t

0

V (x)

L
eRx/Ldx .
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Constant coefficient second order equations

Definition

A linear equation of second order is an equation of type

y ′′ + P1(x)y ′ + P2(x)y = R(x).

The functions P1(x) and P2(x) are called coefficients. If R(x) = 0 the
equation is homogeneous. If P1(x) and P2(x) are constants the equation
is a constant coefficient equation.
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Constant coefficient second order equations

The equation y ′′ = 0 is solved by integration. All solutions take the
form

y(x) = c1x + c2

where c1, c2 are arbitrary constants.
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Constant coefficient second order equations

Constant y ′′ + by = 0, where b < 0. Since b < 0, let b = −k2.

The equation y ′′ = k2y has a pair of solutions, y = ekx , y = e−kx .

The general form of a solutions is y = c1ekx + c2e−kx where c1, c2 are
arbitrary constants (proof to come).
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Constant coefficient second order equations

Consider y ′′ + by = 0, where b > 0. Since b > 0, let b = k2.

The equation y ′′ = −k2y has a pair of solutions, y = e ikx , y = e−ikx .

The general form of a solutions is y = c1 cos(kx) + c2 sin(kx) where
c1, c2 are arbitrary constants. This can be rewritten in the form
y = C sin(kx + α) (proof to come).
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Constant coefficient second order equations

A constant coefficient equation y ′′ + ay ′ + by = 0 can be reduced to
an equation u′′ + cu = 0 by the substitution u = e

ax
2 y .

To check this, verify

y ′ =
(

u′ − a

2
u
)

e−
ax
2 , y ′′ =

(
u′′ − au′ +

a2

4
u

)
e−

ax
2 .

Thus y ′′ + ay ′ + by = 0 implies(
u′′ +

(
b − a2

4

)
u

)
e−

ax
2 = 0 ⇔ u′′ +

(
b − a2

4

)
u = 0.
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Uniqueness of solutions

Theorem

Let f and g be two solutions of the equation y ′′ + by = 0 on (−∞,∞).
Assume

f (0) = g(0), f ′(0) = g ′(0).

Then f (x) = g(x) for all x.
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Uniqueness of solutions

Proof.

Let h(x) = f (x)− g(x) so that h(0) = h′(0) = 0. We show that there is
an interval I = [−δ, δ], δ > 0, such that h ≡ 0 on I . By translation, this
holds on all of R.
To check the claim, let M = maxI (|h(x)|), and Taylor expand about 0 to
obtain

h(x) =

∫ x

0
(x − t)h′′(t)dt = −b

∫ x

0
(x − t)h(t)dt.

Thus

|h(x)| ≤ M|b|
∫ |x |
0
|x − t|dt ≤ M|b|x2

2
.

It follows that M ≤ M |b|δ2
2 which forces M = 0 if |b|δ2 < 2.
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The Wronskian

Definition

Given a homogeneous second order equation y ′′ + P1(x)y ′ + P2(x)y = 0
and two solutions v1(x) and v2(x), their Wronskian is

W (x) = v1(x)v ′2(x)− v2(x)v ′1(x).
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Constructing the particular solution

Theorem

Let v1 and v2 be two solutions of the homogeneous equation

y ′′ + ay ′ + by = 0

with non-vanishing Wronskian. The inhomogeneous equation

y ′′ + ay ′ + by = R(x)

has particular solution

y1(x) = t1(x)v1(x) + t2(x)v2(x)

where

t1(x) = −
∫

v2(x)
R(x)

W (x)
dx , t2(x) =

∫
v1(x)

R(x)

W (x)
dx .
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Constructing the particular solution

Proof.

Recall t1(x) = −
∫

v2(x) R(x)
W (x)dx , t2(x) =

∫
v1(x) R(x)

W (x)dx . Observe

y1 = t1v1 + t2v2

y ′1 = t1v ′1 + t2v ′2 + (t ′1v1 + t ′2v2)

y ′′1 = t1v ′′1 + t2v ′′2 + (t ′1v ′1 + t ′2v ′2) + (t ′1v1 + t ′2v2)′.

Notice t ′1(x) = −v2(x) R(x)
W (x) , t ′2(x) = v1(x) R(x)

W (x) . Thus t ′1v1 + t ′2v2 = 0,

and t ′1v ′1 + t ′2v ′2 = R(x). Adding the equations,

y ′′1 + ay ′1 + by1 = R(x).
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Example

Problem

Find the general solution of the equation y ′′ + y = tan x on (−π/2, π/2).

Solution

Two solutions of the homogeneous equation are given by v1(x) = cos x,
v2(x) = sin x. The Wronskian is
W (x) = v1(x)v ′2(x)− v2(x)v ′1(x) = cos2 x + sin2 x = 1. Thus

t1(x) = −
∫

sin x tan xdx = sin x − log | sec x + tan x |

t2(x) =

∫
cos x tan xdx =

∫
sin xdx = − cos x .

A particular solution is thus

y1 = v1t1 + v2t2 = − cos x log | sec x + tan x |.
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Example

Solution

The general solution is thus

y = c1 cos x + c2 sin x − cos x log | sec x + tan x |.
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Simple harmonic motion

A particle, constrained to move in a straight line, experiences a force
toward a fixed point, which is proportional to the distance from the
point. This is approximated, for instance, by a releasing a stretched
spring, or plucking a violin string. Absent further external forces, the
particle exhibits simple harmonic motion.

The particle’s displacement from the central point is governed by

y ′′ + k2y = 0.

This has solutions y = A sin kx + B cos kx .
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Damped vibration

A particle experiencing simple harmonic motion is damped with a
external force proportional to its velocity (friction). Motion is now
governed by the equation

y ′′ + 2cy ′ + k2y = 0.

Critical damping occurs if c2 = k2. In this case, y = e−cx(A + Bx).

Overcritical damping occurs if c2 > k2. In this case the solution has
the form y = e−cx(Aehx + Be−hx) = Ae(h−c)x + Be(h+c)x , where
h =
√

c2 − k2.
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Damped vibration

Undercritical damping occurs if c2 < k2. In this case,

y = Ce−cx sin(hx + α)

where h =
√

k2 − c2.
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Electric circuits

An electric circuit with a capacitor satisfies the second order equation

LI ′′(t) + RI ′(t) +
1

C
I (t) = V ′(t).

If the voltage is held constant, then

I ′′(t) +
R

L
I ′(t) +

1

LC
I (t) = 0.

Since R
L = 2c > 0, the current tends to 0 as time tends to infinity

(damping).
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