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First Fundamental Theorem of Calculus

Theorem (First Fundamental Theorem of Calculus)

Let f be a function that is integrable on [a, b]. Let ¢ be such that
a < ¢ < b and define, for a < x < b,

A(x) = /X f(t)dt.

The derivative A'(x) exists at each point x € (a, b) where f is continuous
and A'(x) = f(x).
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First Fundamental Theorem of Calculus

Proof.

@ Let f be continuous at x. Given € > 0 choose § > 0 such that if
|h| <6, |[f(x+ h) — f(x)] < e.
o Write, for h # 0,
x-+h X x-+h
Alx+ h) — A(x) = / F()dt — / F(t)dt = / F(t)dt.
C C X

Thus
A(x + h) — A(x) _ 1

x+h x+h
) E/X F(t)dt = f(x)+%/x (F() — F(x))dt.

@ For |h| < ¢ the last integral is bounded in size by €, from which the
limit follows.

Ol

v
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Zero-derivative Theorem

Theorem

If f'(x) = 0 for each x in an open interval I, then f is constant on I.

Proof.

Let x # y in I. Since f is differentiable, by th? I)\/Ie?n) Value Theorem there
. o _ f(y)—f(x

is z between x and y such that 0 = f/(z) = — = DJ
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Second Fundamental Theorem of Calculus

Theorem (Second Fundamental Theorem of Calculus)

Let f be continuous on (a, b) and suppose P'(x) = f(x) for all x € (a, b).
Then for all ¢ € (a, b),

P(x) = P(c) + /CX f(t)dt.

Proof.
Observe that Q(x) = P(x) — [ f(t)dt has Q'(x) =0, and thus
Q(x) = C is a constant. Set x = ¢ to find C = Q(c) = P(c). O
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Substitution Theorem for Integrals
Theorem

Assume g has a continuous derivative g’ on an open interval |. Let f be
continuous on the range of g. Then for each c,x € I,

X g(x)
Afmmymmzfmfww.

Proof.
Define

x g(x)
F = [ fle(@lg/0de~ [ Fu)a
c g(c)
Then by the first FTC and the chain rule

F'(x) = flg(x)lg’(x) — flg(x)lg’(x) =0,

so F is constant on /. Evaluate at x = ¢ to find F(x) = 0.
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Examples

Problem

Integrate [ x3cosx*dx.

Solution

Substitute u = x*, using du = 4x3dx. Thus the integral is given by
% sinx* + C.
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Examples

Problem

Integrate [ cos® x sin xdx.

Solution
Substitute u = cos x, so that du = — sin xdx. Thus

3
/cos2xsinxdx:—/u2du= —Co; X + C.
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Examples

Problem
Integrate [ % dx.
Solution

Let u = +/x so that du = ﬁdx. Hence

/ Sir:/\)_{)_(dx =2

/sin udu = —2cos+/x + C.

o 5 = DA
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Examples

Problem

Integrate [ \/’%.

Solution

Substitute u = 1 + x2, du = 2xdx. Hence

/ xdx 1 du 1
il

b ./ 2
2] Ju u2 +C 1+ x2+ C.
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Examples

Problem

3 (x+1)dx
Evaluate f2 m

Solution
Substitute u = x2 + 2x + 3, du = 2x + 2 to find

3 18

1 1 18

/ _ e gy _/ urdu=u| =18 — V1l
2 Vx2+2x+3 2J/n 1
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Integration by parts

Theorem
Let f and g be continuously differentiable on [a, b]. Then
b
a

b
/ F(£)g/(t)dt = F(b)g(b) — F(a)g(a) - / F (g (t)dt.

Proof.
Write h(x) = f(x)g(x). Then h'(x) = f(x)g’(x) + f'(x)g(x) and hence
b b
h(b) — h(a) = /a H (x)dx = /a f(x)g'(x) + f'(x)g(x)dx.

Rearranging these integrals gives the claim. [
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Examples

Problem

Integrate [ x cos xdx.

Solution
Let u = x and dv = cos xdx so du = dx and v = sin x. Integrating by
parts

/xcosxdx:xsinx—/sinxdx+C:xsinx+cosx+C.
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Examples

Problem

Integrate [ x? cos xdx.

Solution

Let u = x? and dv = cos xdx so that du = 2xdx and v = sin x.
Integrating by parts obtains

/xzcosxdx:x2sinx—2/xsinxdx—|—C.

Now set u = x, dv = sin xdx so du = dx and v = — cos x and integrate by
parts again to obtain

/xsinxdx = —xcosx +sinx + C

/chosxdx = x%sinx + 2xcosx — 2sinx + C.
4
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Definition of the natural logarithm

Definition
The natural logarithm log : (0,00) — R is defined by

| X dt
og X = —,
g o
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Basic properties of the logarithm

Theorem

The natural logarithm satisfies the following properties.
Q log(1) =0.
@ log'(x) = 3.

@ log(ab) = log(a) + log(b) for every a > 0, b > 0.

Proof.

The first item is immediate, and the second follows from the FTC. For the

third, write . ,
ab dt a dt b dt
log(ab) :/ — :/ —+/ —.
1t 1t a

In the second integral, make the substitution u = g du = %, so that the
second integral becomes flb %. Thus log(ab) = log(a) + log(b). O
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Properties of the functional equation
Theorem

The natural logarithm log : (0,00) — R is a bijection.

Proof.

@ Since log'(x) = % > 0, log is strictly increasing, hence injective.

@ To check that it is surjective, note that Iog% = —log x, so it suffices
to prove that log takes every positive real value.

@ In fact, log is differentiable, hence continuous, so by the Intermediate
Value Theorem, it suffices to check that log x is unbounded.

@ Observe, for n > 0,

on+1 dt - 1 on+l dt 3 1
ot 2t ), T2

It follows that log(2") > 7 for all n.

V.
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Logarithms to other bases

Definition

Let b > 0, b # 1 be a real number. The logarithm base b is the function
logy, : (0,00) — R defined by

log x
log, x = ——
b .
log b
v

October 12, 2016 18 / 36




The power function

@ Let b >0, b # 1. Note that log, b = 1.

@ Hence, for every n € Z, log, b" = n by the addition property of the
logarithm.

o 1 )
e Similarly, for any n > 0, log, b» = % and hence for all rational g,

P
g =P
IOgbb q:

Definition
Let b> 0, b# 1 and let r € R. Define b” to be the unique real number
such that log, b" = r. Define 1" = 1.
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The exponential function
Definition
Euler's constant e satisfies loge = 1.

Theorem

The exponential function €* : R — (0, 00) is the inverse function of log. It
satisfies the following properties:

Q=1 ¢el=e
Q %exzex.

© For all real a, b, et = e2eb.

Proof.
The first and third properties follow from those of log. By the chain rule
d 1 d
1=—1 )= ——e~.
dx og(e”) eX dxe

y
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Integrals involving logs

When a < b < 0, substitute v = —t, du = —dft to find

b —b
[ = S —oglbl ~togal
a t _a u

Thus [ % = log|x| + C, with the proviso that the range of integration
does not include 0.
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Integrals involving logs

Problem
Integrate [ tan xdx.

Solution

Since tan x = 2=, set u = cosx, du = — sin xdx to find

/tanxdx:—/%:—Iog|u|+C:—|og|cosx|—|—C.
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Integrals involving logs

Problem
Integrate [ log xdx.

Solution

Let u=logx, dv = dx, du= %, v = x and integrate by parts to find
g X

/Iogxdx:xlogx—/ldx:xlogx—x+ C.
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Integrals involving logs

Problem

Integrate [ sin(log x)dx.

Solution

Let u = sin(logx), dv = dx, du = <(%€X) "\, — x and integrate by parts
g X

sin(log x)dx = xsin(log x) — | cos(log x)dx.
/ /

Let u = cos(logx), dv = dx, du = —Si"(lxix), v = x and integrate by parts

/cos(log x)dx = x cos(log x) + /sin(log x)dx.

Adding the equations, 2 [ sin(log x)dx = xsin(log x) — x cos(log x) + C.
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Logarithmic differentiation

Theorem
Let f be differentiable in a neighborhood of x and satisfy f(x) # 0. Then
f'(x)
Iog|f( ) HOK )
Proof.
This follows from the Fundamental Theorem of Calculus and the chain
rule. ]

v
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Examples

Logarithmic differentiation aids in calculating the derivative of products.
Problem
Calculate f'(x) if f(x) = x? cos x(1 + x*)~7.

Solution
Let g(x) = log |f(x)| = 2log |x| + log | cos x| — 7 log(1 + x*). Then

28x3

2
/
= — —t = =
g (x) x XTI e

SO

2 28x3
/ _ / 2 N7 = _ _
f'(x) = f(x)g'(x) = x~ cos x(1 + x") (x tanx — —|—x4) .
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Partial fractions

Theorem

Let P(x) and Q(x) be polynomials. The rational function R(x) = g(())g
may be expressed as a linear combination of functions of the following
types:

@ Polynomials

@ Negative integer powers of a linear factor: ﬁ
© Negative integer powers of an irreducible quadratic factor:
1
G=arFp b >0

@ Negative integer powers of an irreducible quadratic factor, with
derivative in the numerator: ﬁzj—b)n, b > 0.

We will discuss the proof of this theorem after proving the Fundamental
Theorem of Algebra.
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Partial fractions

By making linear translations of the type u = x — a, u = ax the problem
of integrating rational functions reduces to integrals of the following type

Q@ x ! with f% = log|x| + C.
(2 x", n# —1 an integer, with [ x"dx = n+11 +C

o 2+1 with [ 2de—log|x +1]+C
2 1—n
© For n > 1 an integer, (x224f1)"' with f( 2+1)n = Ir_lz, + C.
(5] X+ with 2H—tanflx—i-C.
@ For n > 1 an integer, W This is most easily treated using

complex numbers, see the next slide.
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Partial fractions

1 1 1 1 1
© Factor X+ T =N+ T 20 <E o X_—H)

@ Using this formula repeatedly, one may express, for each n=1,2, ...,

ﬁ:i%(( 1) (ijw

Jj=1

. 1 _ -1 2 —
For instance, 02~ 4 <(X )2 + (X+,) - (x—i)(x-l—i)) -

%(ﬁJrﬁ—%(%_x%i))'
1

e For j > 1, use the formula [ ﬁ = EW + C, which

remains valid for o complex.
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Examples
Problem

Integrate [ XH2xt3

(x—1)(x+1)?

Solution

@ First, solve for

X2+2X+3 A1 A

A3
G U E w1 el i O

x242x4+3=A1(x+1)% + Ax(x — 1)(x + 1) + As(x — 1).

o Set x =1 to find Ay = 3. Set x = —1 to find A = —1. By

considering the x> term, A, = %1
o Thus
x2+2x+3 3 1 1
——————dx == -1 - =1 1]+ —+C.
/(x—l)(x+1)2 x 2og|x | 2og|x+ | + +

x+1

V.
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Examples

Problem

2
Integrate [ 3"—;%%172 dx.

Solution

o Factorx®— 1= (x = 1) +x+1) = (x — 1)((x + 1/2)? + ).
@ Solve for A, B, C such that

32 4+2x—2 A

B(2x+1)+ C
x3—1 Cox—1

x2+x+1
3% +2x — 2= A0 +x+ 1)+ (B(2x + 1) + C)(x — 1).
@ Set x=1to find A= 1.

o Thus2x?>+x—3=(B(2x+ 1)+ C)(x — 1), so
B(2x+1)+ C=2x+3and B=1,C = 2.

v
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Examples

Solution
Hence

3x% +2x — 2 2 dx
———dx =1 — 1|41 1)+2 .
/ ERE og|x — 1|+ log(x*+x+1)+ /(x+1/2)2+3/4

To evaluate the last integral, set u = \/g(x +1/2), dx = */ngu to obtain

dx du & —1
2/(x+1/2)2+3/4:\/5/3/4(u2+1):%ta" utC

_ %tan—l (%(M 1/2)) +C.
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The inequality between the arithmetic and geometric
means

Theorem

Let x1,x2, ..., X, be positive real numbers. Then

Gn:(xl‘---'xn)% SLH'JFX"zAW

In words, the geometric mean is less than or equal to the arithmetic mean.

V.

Proof.

Let f(x) = log x on (0,00). Then f”(x) = —% <0, so f is concave. By
Jensen’s inequality,
I C
log (Ay) > 1BXL - Xn)
n
and, exponentiating, A, > G,. O

bl
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Complex valued functions

Let / be an interval and let f : | — C be complex valued.

@ Such an f may be written as f(x) = fi(x) + if2(x) where
fi,f : I — R are real valued.

e f is continuous/differentiable at a point x if and only if both f; and £,
are continuous/differentiable at x. If f is differentiable at x its
derivative at x is given by (the distance in the limit is the absolute
value on C)

£ = A6 + if(x) = fim TEFRZTE)

o f is integrable on / if and only if both f; and £, are integrable on /. If
f is integrable, its integral is given by

/ab F(x)dx = /ab £ (x)dx + i/ab () dx.
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Complex valued functions

@ When z is a complex number, the function f(x) = (x —z)", n> 0 an
integer may be expanded by the binomial theorem and has real and
imaginary parts that are polynomials in x, hence are continuous and
differentiable.

. . 1 _F\n
@ When n > 0 is an integer, f(x) = Gz = (XLX%?HZ'Q)”. The
denominator is a real polynomial, so continuous and differentiable,
and the numerator is of the type above, so where x # z, 0 L _is

—
x—z)"
continuous and differentiable.
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Complex valued functions
The formula <

2 (x —z)" = n(x — z)"~! which is valid for all integer n, may

be obtained by the same algebraic manipulations used to calculate the
derivative in the case that z is real: e.g. for n > 0,

(x+h—z)""—(x—2)""

1 n—1

1 - 1
x—|—h—z_x—z} z%(x—i—h—z)
J:

n=1-j(x — z)y

_h n—1
(x+h—2z)(x—2z)

1
= (x+h—z)r"17i(x — z))

Thus, by continuity,

. (x+h=—z)"—(x—2z)™" —n
lim = .
h—0 h (x — z)rt1
The Fundamental Theorem of Calculus can now be applied to the

imaginary and real parts to obtain integration formulas that reverse the

differentiation.
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