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First Fundamental Theorem of Calculus

Theorem (First Fundamental Theorem of Calculus)

Let f be a function that is integrable on [a, b]. Let c be such that
a ≤ c ≤ b and define, for a ≤ x ≤ b,

A(x) =

∫ x

c
f (t)dt.

The derivative A′(x) exists at each point x ∈ (a, b) where f is continuous
and A′(x) = f (x).
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First Fundamental Theorem of Calculus

Proof.

Let f be continuous at x . Given ε > 0 choose δ > 0 such that if
|h| < δ, |f (x + h)− f (x)| < ε.

Write, for h 6= 0,

A(x + h)− A(x) =

∫ x+h

c
f (t)dt −

∫ x

c
f (t)dt =

∫ x+h

x
f (t)dt.

Thus

A(x + h)− A(x)

h
=

1

h

∫ x+h

x
f (t)dt = f (x) +

1

h

∫ x+h

x
(f (t)− f (x))dt.

For |h| < δ the last integral is bounded in size by ε, from which the
limit follows.
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Zero-derivative Theorem

Theorem

If f ′(x) = 0 for each x in an open interval I , then f is constant on I .

Proof.

Let x 6= y in I . Since f is differentiable, by the Mean Value Theorem there
is z between x and y such that 0 = f ′(z) = f (y)−f (x)

y−x .
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Second Fundamental Theorem of Calculus

Theorem (Second Fundamental Theorem of Calculus)

Let f be continuous on (a, b) and suppose P ′(x) = f (x) for all x ∈ (a, b).
Then for all c ∈ (a, b),

P(x) = P(c) +

∫ x

c
f (t)dt.

Proof.

Observe that Q(x) = P(x)−
∫ x
c f (t)dt has Q ′(x) = 0, and thus

Q(x) = C is a constant. Set x = c to find C = Q(c) = P(c).
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Substitution Theorem for Integrals

Theorem

Assume g has a continuous derivative g ′ on an open interval I . Let f be
continuous on the range of g. Then for each c , x ∈ I ,∫ x

c
f [g(t)]g ′(t)dt =

∫ g(x)

g(c)
f (u)du.

Proof.

Define

F (x) =

∫ x

c
f [g(t)]g ′(t)dt −

∫ g(x)

g(c)
f (u)du.

Then by the first FTC and the chain rule

F ′(x) = f [g(x)]g ′(x)− f [g(x)]g ′(x) = 0,

so F is constant on I . Evaluate at x = c to find F (x) = 0.
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Examples

Problem

Integrate
∫

x3 cos x4dx.

Solution

Substitute u = x4, using du = 4x3dx. Thus the integral is given by
1
4 sin x4 + C .
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Examples

Problem

Integrate
∫

cos2 x sin xdx.

Solution

Substitute u = cos x, so that du = − sin xdx. Thus∫
cos2 x sin xdx = −

∫
u2du = −cos3 x

3
+ C .
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Examples

Problem

Integrate
∫ sin

√
x√

x
dx.

Solution

Let u =
√

x so that du = 1
2
√
x

dx. Hence∫
sin
√

x√
x

dx = 2

∫
sin udu = −2 cos

√
x + C .
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Examples

Problem

Integrate
∫

xdx√
1+x2

.

Solution

Substitute u = 1 + x2, du = 2xdx. Hence∫
xdx√
1 + x2

=
1

2

∫
du√

u
= u

1
2 + C =

√
1 + x2 + C .
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Examples

Problem

Evaluate
∫ 3
2

(x+1)dx√
x2+2x+3

.

Solution

Substitute u = x2 + 2x + 3, du = 2x + 2 to find∫ 3

2

(x + 1)dx√
x2 + 2x + 3

=
1

2

∫ 18

11
u−

1
2 du =

√
u
∣∣∣18
11

=
√

18−
√

11.
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Integration by parts

Theorem

Let f and g be continuously differentiable on [a, b]. Then∫ b

a
f (t)g ′(t)dt = f (b)g(b)− f (a)g(a)−

∫ b

a
f ′(t)g(t)dt.

Proof.

Write h(x) = f (x)g(x). Then h′(x) = f (x)g ′(x) + f ′(x)g(x) and hence

h(b)− h(a) =

∫ b

a
h′(x)dx =

∫ b

a
f (x)g ′(x) + f ′(x)g(x)dx .

Rearranging these integrals gives the claim.
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Examples

Problem

Integrate
∫

x cos xdx.

Solution

Let u = x and dv = cos xdx so du = dx and v = sin x. Integrating by
parts ∫

x cos xdx = x sin x −
∫

sin xdx + C = x sin x + cos x + C .
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Examples

Problem

Integrate
∫

x2 cos xdx.

Solution

Let u = x2 and dv = cos xdx so that du = 2xdx and v = sin x.
Integrating by parts obtains∫

x2 cos xdx = x2 sin x − 2

∫
x sin xdx + C .

Now set u = x, dv = sin xdx so du = dx and v = − cos x and integrate by
parts again to obtain∫

x sin xdx = −x cos x + sin x + C∫
x2 cos xdx = x2 sin x + 2x cos x − 2 sin x + C .
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Definition of the natural logarithm

Definition

The natural logarithm log : (0,∞)→ R is defined by

log x =

∫ x

1

dt

t
.

Bob Hough Math 141: Lecture 11 October 12, 2016 15 / 36



Basic properties of the logarithm

Theorem

The natural logarithm satisfies the following properties.

1 log(1) = 0.

2 log′(x) = 1
x .

3 log(ab) = log(a) + log(b) for every a > 0, b > 0.

Proof.

The first item is immediate, and the second follows from the FTC. For the
third, write

log(ab) =

∫ ab

1

dt

t
=

∫ a

1

dt

t
+

∫ ab

a

dt

t
.

In the second integral, make the substitution u = t
a , du = dt

a , so that the

second integral becomes
∫ b
1

dt
t . Thus log(ab) = log(a) + log(b).
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Properties of the functional equation

Theorem

The natural logarithm log : (0,∞)→ R is a bijection.

Proof.

Since log′(x) = 1
x > 0, log is strictly increasing, hence injective.

To check that it is surjective, note that log 1
x = − log x , so it suffices

to prove that log takes every positive real value.

In fact, log is differentiable, hence continuous, so by the Intermediate
Value Theorem, it suffices to check that log x is unbounded.

Observe, for n ≥ 0,∫ 2n+1

2n

dt

t
≥ 1

2n+1

∫ 2n+1

2n
dt =

1

2
.

It follows that log(2n) ≥ n
2 for all n.
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Logarithms to other bases

Definition

Let b > 0, b 6= 1 be a real number. The logarithm base b is the function
logb : (0,∞)→ R defined by

logb x =
log x

log b
.
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The power function

Let b > 0, b 6= 1. Note that logb b = 1.

Hence, for every n ∈ Z, logb bn = n by the addition property of the
logarithm.

Similarly, for any n ≥ 0, logb b
1
n = 1

n , and hence for all rational p
q ,

logb b
p
q = p

q .

Definition

Let b > 0, b 6= 1 and let r ∈ R. Define br to be the unique real number
such that logb br = r . Define 1r = 1.
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The exponential function

Definition

Euler’s constant e satisfies log e = 1.

Theorem

The exponential function ex : R→ (0,∞) is the inverse function of log. It
satisfies the following properties:

1 e0 = 1, e1 = e.

2 d
dx ex = ex .

3 For all real a, b, ea+b = eaeb.

Proof.

The first and third properties follow from those of log. By the chain rule

1 =
d

dx
log(ex) =

1

ex
d

dx
ex .
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Integrals involving logs

When a < b < 0, substitute u = −t, du = −dt to find∫ b

a

dt

t
=

∫ −b
−a

du

u
= log |b| − log |a|.

Thus
∫

dt
t = log |x |+ C , with the proviso that the range of integration

does not include 0.
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Integrals involving logs

Problem

Integrate
∫

tan xdx.

Solution

Since tan x = sin x
cos x , set u = cos x, du = − sin xdx to find∫

tan xdx = −
∫

du

u
= − log |u|+ C = − log | cos x |+ C .
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Integrals involving logs

Problem

Integrate
∫

log xdx.

Solution

Let u = log x, dv = dx, du = dx
x , v = x and integrate by parts to find∫

log xdx = x log x −
∫

1dx = x log x − x + C .
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Integrals involving logs

Problem

Integrate
∫

sin(log x)dx.

Solution

Let u = sin(log x), dv = dx, du = cos(log x)
x , v = x and integrate by parts∫

sin(log x)dx = x sin(log x)−
∫

cos(log x)dx .

Let u = cos(log x), dv = dx, du = − sin(log x)
x , v = x and integrate by parts∫

cos(log x)dx = x cos(log x) +

∫
sin(log x)dx .

Adding the equations, 2
∫

sin(log x)dx = x sin(log x)− x cos(log x) + C .
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Logarithmic differentiation

Theorem

Let f be differentiable in a neighborhood of x and satisfy f (x) 6= 0. Then
d
dx log |f (x)| = f ′(x)

f (x) .

Proof.

This follows from the Fundamental Theorem of Calculus and the chain
rule.
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Examples

Logarithmic differentiation aids in calculating the derivative of products.

Problem

Calculate f ′(x) if f (x) = x2 cos x(1 + x4)−7.

Solution

Let g(x) = log |f (x)| = 2 log |x |+ log | cos x | − 7 log(1 + x4). Then

g ′(x) =
2

x
− tan x − 28x3

1 + x4
,

so

f ′(x) = f (x)g ′(x) = x2 cos x(1 + x4)−7
(

2

x
− tan x − 28x3

1 + x4

)
.
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Partial fractions

Theorem

Let P(x) and Q(x) be polynomials. The rational function R(x) = P(x)
Q(x)

may be expressed as a linear combination of functions of the following
types:

1 Polynomials

2 Negative integer powers of a linear factor: 1
(x−r)n

3 Negative integer powers of an irreducible quadratic factor:
1

((x−a)2+b)n
, b > 0.

4 Negative integer powers of an irreducible quadratic factor, with
derivative in the numerator: 2x−2a

((x−a)2+b)n
, b > 0.

We will discuss the proof of this theorem after proving the Fundamental
Theorem of Algebra.
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Partial fractions

By making linear translations of the type u = x − a, u = ax the problem
of integrating rational functions reduces to integrals of the following type

1 x−1 with
∫

dx
x = log |x |+ C .

2 xn, n 6= −1 an integer, with
∫

xndx = xn+1

n+1 + C .

3 2x
x2+1

with
∫

2x
x2+1

dx = log |x2 + 1|+ C

4 For n > 1 an integer, 2x
(x2+1)n

, with
∫

2x
(x2+1)n

= (x2+1)1−n

1−n + C .

5 1
x2+1

with
∫

dx
x2+1

= tan−1 x + C .

6 For n > 1 an integer, 1
(x2+1)n

. This is most easily treated using

complex numbers, see the next slide.
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Partial fractions

Factor 1
x2+1

= 1
(x−i)(x+i) = 1

2i

(
1

x−i −
1

x+i

)
.

Using this formula repeatedly, one may express, for each n = 1, 2, ...,

1

(x2 + 1)n
=

n∑
j=1

cj ,n

(
1

(x − i)j
+

(−1)j

(x + i)j

)
.

For instance, 1
(x2+1)2

= −1
4

(
1

(x−i)2 + 1
(x+i)2

− 2
(x−i)(x+i)

)
=

−1
4

(
1

(x−i)2 + 1
(x+i)2

− 1
i

(
1

x−i −
1

x+i

))
.

For j > 1, use the formula
∫

dx
(x−α)j = 1

1−j
1

(x−α)j−1 + C , which

remains valid for α complex.
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Examples

Problem

Integrate
∫

x2+2x+3
(x−1)(x+1)2

dx.

Solution

First, solve for

x2 + 2x + 3

(x − 1)(x + 1)2
=

A1

x − 1
+

A2

x + 1
+

A3

(x + 1)2
⇔

x2 + 2x + 3 = A1(x + 1)2 + A2(x − 1)(x + 1) + A3(x − 1).

Set x = 1 to find A1 = 3
2 . Set x = −1 to find A3 = −1. By

considering the x2 term, A2 = −1
2 .

Thus∫
x2 + 2x + 3

(x − 1)(x + 1)2
dx =

3

2
log |x − 1| − 1

2
log |x + 1|+ 1

x + 1
+ C .

Bob Hough Math 141: Lecture 11 October 12, 2016 30 / 36



Examples

Problem

Integrate
∫

3x2+2x−2
x3−1 dx.

Solution

Factor x3 − 1 = (x − 1)(x2 + x + 1) = (x − 1)((x + 1/2)2 + 3
4).

Solve for A,B,C such that

3x2 + 2x − 2

x3 − 1
=

A

x − 1
+

B(2x + 1) + C

x2 + x + 1
⇔

3x2 + 2x − 2 = A(x2 + x + 1) + (B(2x + 1) + C )(x − 1).

Set x = 1 to find A = 1.

Thus 2x2 + x − 3 = (B(2x + 1) + C )(x − 1), so
B(2x + 1) + C = 2x + 3 and B = 1,C = 2.
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Examples

Solution

Hence∫
3x2 + 2x − 2

x3 − 1
dx = log |x −1|+ log(x2 + x + 1) + 2

∫
dx

(x + 1/2)2 + 3/4
.

To evaluate the last integral, set u =
√

4
3(x + 1/2), dx =

√
3
2 du to obtain

2

∫
dx

(x + 1/2)2 + 3/4
=
√

3

∫
du

3/4(u2 + 1)
=

4√
3

tan−1 u + C

=
4√
3

tan−1
(

2√
3

(x + 1/2)

)
+ C .
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The inequality between the arithmetic and geometric
means

Theorem

Let x1, x2, ..., xn be positive real numbers. Then

Gn = (x1 · ... · xn)
1
n ≤ x1 + ...+ xn

n
= An.

In words, the geometric mean is less than or equal to the arithmetic mean.

Proof.

Let f (x) = log x on (0,∞). Then f ′′(x) = − 1
x2
< 0, so f is concave. By

Jensen’s inequality,

log (An) ≥ log(x1 · ... · xn)

n
,

and, exponentiating, An ≥ Gn.
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Complex valued functions

Let I be an interval and let f : I → C be complex valued.

Such an f may be written as f (x) = f1(x) + if2(x) where
f1, f2 : I → R are real valued.

f is continuous/differentiable at a point x if and only if both f1 and f2
are continuous/differentiable at x . If f is differentiable at x its
derivative at x is given by (the distance in the limit is the absolute
value on C)

f ′(x) = f ′1(x) + if ′2(x) = lim
h→0

f (x + h)− f (x)

h
.

f is integrable on I if and only if both f1 and f2 are integrable on I . If
f is integrable, its integral is given by∫ b

a
f (x)dx =

∫ b

a
f1(x)dx + i

∫ b

a
f2(x)dx .
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Complex valued functions

When z is a complex number, the function f (x) = (x − z)n, n ≥ 0 an
integer may be expanded by the binomial theorem and has real and
imaginary parts that are polynomials in x , hence are continuous and
differentiable.

When n > 0 is an integer, f (x) = 1
(x−z)n = (x−z)n

(x2−2x<z+|z|2)n . The

denominator is a real polynomial, so continuous and differentiable,
and the numerator is of the type above, so where x 6= z , 1

(x−z)n is
continuous and differentiable.
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Complex valued functions
The formula d

dx (x − z)n = n(x − z)n−1 which is valid for all integer n, may
be obtained by the same algebraic manipulations used to calculate the
derivative in the case that z is real: e.g. for n > 0,

(x + h − z)−n − (x − z)−n

=

[
1

x + h − z
− 1

x − z

]n−1∑
j=0

1

(x + h − z)n−1−j(x − z)j


=

−h

(x + h − z)(x − z)

n−1∑
j=0

1

(x + h − z)n−1−j(x − z)j

 .
Thus, by continuity,

lim
h→0

(x + h − z)−n − (x − z)−n

h
=

−n

(x − z)n+1
.

The Fundamental Theorem of Calculus can now be applied to the
imaginary and real parts to obtain integration formulas that reverse the
differentiation.
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