Math 141: Lecture 11 The Fundamental Theorem of Calculus and integration methods

Bob Hough

October 12, 2016

Bob Hough

Math 141: Lecture 11

October 12, 2016 1 / 36

First Fundamental Theorem of Calculus

Theorem (First Fundamental Theorem of Calculus)

Let f be a function that is integrable on [a, b]. Let c be such that $a \le c \le b$ and define, for $a \le x \le b$,

$$A(x)=\int_c^x f(t)dt.$$

The derivative A'(x) exists at each point $x \in (a, b)$ where f is continuous and A'(x) = f(x).

First Fundamental Theorem of Calculus

Proof.

- Let f be continuous at x. Given $\epsilon > 0$ choose $\delta > 0$ such that if $|h| < \delta$, $|f(x + h) f(x)| < \epsilon$.
- Write, for $h \neq 0$,

$$A(x+h)-A(x)=\int_{c}^{x+h}f(t)dt-\int_{c}^{x}f(t)dt=\int_{x}^{x+h}f(t)dt.$$

Thus

$$\frac{A(x+h) - A(x)}{h} = \frac{1}{h} \int_{x}^{x+h} f(t) dt = f(x) + \frac{1}{h} \int_{x}^{x+h} (f(t) - f(x)) dt.$$

 For |h| < δ the last integral is bounded in size by ε, from which the limit follows.

イロト イポト イヨト イヨト

Zero-derivative Theorem

Theorem

If f'(x) = 0 for each x in an open interval I, then f is constant on I.

Proof.

Let $x \neq y$ in *I*. Since *f* is differentiable, by the Mean Value Theorem there is *z* between *x* and *y* such that $0 = f'(z) = \frac{f(y) - f(x)}{y - x}$.

A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Second Fundamental Theorem of Calculus

Theorem (Second Fundamental Theorem of Calculus)

Let f be continuous on (a, b) and suppose P'(x) = f(x) for all $x \in (a, b)$. Then for all $c \in (a, b)$,

$$P(x) = P(c) + \int_c^x f(t) dt.$$

Proof.

Observe that
$$Q(x) = P(x) - \int_c^x f(t)dt$$
 has $Q'(x) = 0$, and thus $Q(x) = C$ is a constant. Set $x = c$ to find $C = Q(c) = P(c)$.

一日、

Substitution Theorem for Integrals

Theorem

Assume g has a continuous derivative g' on an open interval I. Let f be continuous on the range of g. Then for each $c, x \in I$,

$$\int_c^{x} f[g(t)]g'(t)dt = \int_{g(c)}^{g(x)} f(u)du.$$

Proof.

Define

$$F(x) = \int_c^x f[g(t)]g'(t)dt - \int_{g(c)}^{g(x)} f(u)du.$$

Then by the first FTC and the chain rule

$$F'(x) = f[g(x)]g'(x) - f[g(x)]g'(x) = 0,$$

so F is constant on I. Evaluate at x = c to find F(x) = 0.

Problem

Integrate $\int x^3 \cos x^4 dx$.

Solution

Substitute $u = x^4$, using $du = 4x^3 dx$. Thus the integral is given by $\frac{1}{4}\sin x^4 + C.$

過 ト イヨ ト イヨト

Problem

Integrate $\int \cos^2 x \sin x dx$.

Solution

Substitute $u = \cos x$, so that $du = -\sin x dx$. Thus

$$\int \cos^2 x \sin x dx = -\int u^2 du = -\frac{\cos^3 x}{3} + C.$$

Bob Hough			

- 2

(日) (同) (日) (日) (日)

Problem

Integrate
$$\int \frac{\sin\sqrt{x}}{\sqrt{x}} dx$$
.

Solution

Let
$$u = \sqrt{x}$$
 so that $du = \frac{1}{2\sqrt{x}}dx$. Hence

$$\int \frac{\sin \sqrt{x}}{\sqrt{x}} dx = 2 \int \sin u du = -2 \cos \sqrt{x} + C.$$

Hough

3

<ロ> (日) (日) (日) (日) (日)

Problem

Integrate
$$\int \frac{xdx}{\sqrt{1+x^2}}$$
.

Solution

Substitute
$$u = 1 + x^2$$
, $du = 2xdx$. Hence

$$\int \frac{x dx}{\sqrt{1+x^2}} = \frac{1}{2} \int \frac{du}{\sqrt{u}} = u^{\frac{1}{2}} + C = \sqrt{1+x^2} + C.$$

3

<ロ> (日) (日) (日) (日) (日)

Problem

Evaluate
$$\int_2^3 \frac{(x+1)dx}{\sqrt{x^2+2x+3}}$$

Solution

Substitute
$$u = x^2 + 2x + 3$$
, $du = 2x + 2$ to find

$$\int_{2}^{3} \frac{(x+1)dx}{\sqrt{x^{2}+2x+3}} = \frac{1}{2} \int_{11}^{18} u^{-\frac{1}{2}} du = \sqrt{u} \Big|_{11}^{18} = \sqrt{18} - \sqrt{11}.$$

2

・ロト ・ 理ト ・ ヨト ・ ヨト

Integration by parts

Theorem

Let f and g be continuously differentiable on [a, b]. Then

$$\int_a^b f(t)g'(t)dt = f(b)g(b) - f(a)g(a) - \int_a^b f'(t)g(t)dt.$$

Proof.

Write h(x) = f(x)g(x). Then h'(x) = f(x)g'(x) + f'(x)g(x) and hence

$$h(b) - h(a) = \int_{a}^{b} h'(x) dx = \int_{a}^{b} f(x)g'(x) + f'(x)g(x) dx.$$

Rearranging these integrals gives the claim.

イロト イポト イヨト イヨト 二日

Problem

Integrate $\int x \cos x dx$.

Solution

Let u = x and $dv = \cos x dx$ so du = dx and $v = \sin x$. Integrating by parts

$$\int x \cos x dx = x \sin x - \int \sin x dx + C = x \sin x + \cos x + C.$$

3

< 回 ト < 三 ト < 三 ト

Problem

Integrate $\int x^2 \cos x dx$.

Solution

Let $u = x^2$ and $dv = \cos x dx$ so that du = 2x dx and $v = \sin x$. Integrating by parts obtains

$$\int x^2 \cos x dx = x^2 \sin x - 2 \int x \sin x dx + C.$$

Now set u = x, $dv = \sin x dx$ so du = dx and $v = -\cos x$ and integrate by parts again to obtain

$$\int x \sin x dx = -x \cos x + \sin x + C$$
$$\int x^2 \cos x dx = x^2 \sin x + 2x \cos x - 2 \sin x + C.$$

Definition of the natural logarithm

Definition

The natural logarithm log : $(0,\infty) \to \mathbb{R}$ is defined by

$$\log x = \int_1^x \frac{dt}{t}.$$

) Hou	

Basic properties of the logarithm

Theorem

The natural logarithm satisfies the following properties.

Proof.

The first item is immediate, and the second follows from the FTC. For the third, write

$$\log(ab) = \int_1^{ab} \frac{dt}{t} = \int_1^a \frac{dt}{t} + \int_a^{ab} \frac{dt}{t}.$$

In the second integral, make the substitution $u = \frac{t}{a}$, $du = \frac{dt}{a}$, so that the second integral becomes $\int_{1}^{b} \frac{dt}{t}$. Thus $\log(ab) = \log(a) + \log(b)$.

(日) (同) (三) (三)

Properties of the functional equation

Theorem

The natural logarithm log : $(0,\infty) \to \mathbb{R}$ is a bijection.

Proof.

- Since $\log'(x) = \frac{1}{x} > 0$, log is strictly increasing, hence injective.
- To check that it is surjective, note that log ¹/_x = -log x, so it suffices to prove that log takes every positive real value.
- In fact, log is differentiable, hence continuous, so by the Intermediate Value Theorem, it suffices to check that log x is unbounded.
- Observe, for $n \ge 0$,

$$\int_{2^n}^{2^{n+1}} rac{dt}{t} \geq rac{1}{2^{n+1}} \int_{2^n}^{2^{n+1}} dt = rac{1}{2}.$$

It follows that $\log(2^n) \geq \frac{n}{2}$ for all n.

Logarithms to other bases

Definition

Let b > 0, $b \neq 1$ be a real number. The logarithm base b is the function $\log_b : (0, \infty) \to \mathbb{R}$ defined by

$$\log_b x = \frac{\log x}{\log b}.$$

Ηοι	

3

A (10) A (10)

The power function

- Let b > 0, $b \neq 1$. Note that $\log_b b = 1$.
- Hence, for every $n \in \mathbb{Z}$, $\log_b b^n = n$ by the addition property of the logarithm.
- Similarly, for any $n \ge 0$, $\log_b b^{\frac{1}{n}} = \frac{1}{n}$, and hence for all rational $\frac{p}{q}$, $\log_b b^{\frac{p}{q}} = \frac{p}{q}$.

Definition

Let b > 0, $b \neq 1$ and let $r \in \mathbb{R}$. Define b^r to be the unique real number such that $\log_b b^r = r$. Define $1^r = 1$.

< 回 ト < 三 ト < 三 ト

The exponential function

Definition

Euler's constant e satisfies log e = 1.

Theorem

The exponential function $e^x : \mathbb{R} \to (0, \infty)$ is the inverse function of log. It satisfies the following properties:

Proof.

The first and third properties follow from those of log. By the chain rule

$$1 = \frac{d}{dx} \log(e^x) = \frac{1}{e^x} \frac{d}{dx} e^x.$$

When a < b < 0, substitute u = -t, du = -dt to find

$$\int_a^b \frac{dt}{t} = \int_{-a}^{-b} \frac{du}{u} = \log|b| - \log|a|.$$

Thus $\int \frac{dt}{t} = \log |x| + C$, with the proviso that the range of integration does not include 0.

- 3

< 回 ト < 三 ト < 三 ト

Problem

Integrate $\int \tan x dx$.

Solution

Since
$$\tan x = \frac{\sin x}{\cos x}$$
, set $u = \cos x$, $du = -\sin x dx$ to find

$$\int \tan x dx = -\int \frac{du}{u} = -\log|u| + C = -\log|\cos x| + C.$$

(日) (周) (三) (三)

3

Problem

Integrate $\int \log x dx$.

Solution

Let $u = \log x$, dv = dx, $du = \frac{dx}{x}$, v = x and integrate by parts to find

$$\int \log x dx = x \log x - \int 1 dx = x \log x - x + C.$$

- 2

< 回 ト < 三 ト < 三 ト

Problem

Integrate $\int \sin(\log x) dx$.

Solution

Let
$$u = sin(log x)$$
, $dv = dx$, $du = \frac{cos(log x)}{x}$, $v = x$ and integrate by parts

$$\int \sin(\log x) dx = x \sin(\log x) - \int \cos(\log x) dx.$$

Let $u = \cos(\log x)$, dv = dx, $du = -\frac{\sin(\log x)}{x}$, v = x and integrate by parts

$$\int \cos(\log x) dx = x \cos(\log x) + \int \sin(\log x) dx.$$

Adding the equations, $2 \int \sin(\log x) dx = x \sin(\log x) - x \cos(\log x) + C$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = ののの

Logarithmic differentiation

Theorem

Let f be differentiable in a neighborhood of x and satisfy $f(x) \neq 0$. Then $\frac{d}{dx} \log |f(x)| = \frac{f'(x)}{f(x)}$.

Proof.

This follows from the Fundamental Theorem of Calculus and the chain rule.

Logarithmic differentiation aids in calculating the derivative of products.

Problem

Calculate
$$f'(x)$$
 if $f(x) = x^2 \cos x (1 + x^4)^{-7}$.

Solution

Let
$$g(x) = \log |f(x)| = 2 \log |x| + \log |\cos x| - 7 \log(1 + x^4)$$
. Then

$$g'(x) = \frac{2}{x} - \tan x - \frac{28x^3}{1+x^4},$$

SO

$$f'(x) = f(x)g'(x) = x^2 \cos x (1+x^4)^{-7} \left(\frac{2}{x} - \tan x - \frac{28x^3}{1+x^4}\right).$$

3

Bob Hough

Partial fractions

Theorem

Let P(x) and Q(x) be polynomials. The rational function $R(x) = \frac{P(x)}{Q(x)}$ may be expressed as a linear combination of functions of the following types:

- Polynomials
- 2 Negative integer powers of a linear factor: $\frac{1}{(x-r)^n}$
- Solution Negative integer powers of an irreducible quadratic factor: $\frac{1}{((x-a)^2+b)^n}, b > 0.$
- Negative integer powers of an irreducible quadratic factor, with derivative in the numerator: ^{2x-2a}/_{((x-a)²+b)ⁿ}, b > 0.

We will discuss the proof of this theorem after proving the Fundamental Theorem of Algebra.

・ 同 ト ・ ヨ ト ・ ヨ ト ・ ヨ

Partial fractions

By making linear translations of the type u = x - a, u = ax the problem of integrating rational functions reduces to integrals of the following type

Partial fractions

• Factor
$$\frac{1}{x^2+1} = \frac{1}{(x-i)(x+i)} = \frac{1}{2i} \left(\frac{1}{x-i} - \frac{1}{x+i} \right).$$

• Using this formula repeatedly, one may express, for each n = 1, 2, ...,

$$\frac{1}{(x^2+1)^n} = \sum_{j=1}^n c_{j,n} \left(\frac{1}{(x-i)^j} + \frac{(-1)^j}{(x+i)^j} \right).$$

For instance,
$$\frac{1}{(x^2+1)^2} = \frac{-1}{4} \left(\frac{1}{(x-i)^2} + \frac{1}{(x+i)^2} - \frac{2}{(x-i)(x+i)} \right) = \frac{-1}{4} \left(\frac{1}{(x-i)^2} + \frac{1}{(x+i)^2} - \frac{1}{i} \left(\frac{1}{x-i} - \frac{1}{x+i} \right) \right).$$

• For j > 1, use the formula $\int \frac{dx}{(x-\alpha)^j} = \frac{1}{1-j} \frac{1}{(x-\alpha)^{j-1}} + C$, which remains valid for α complex.

・ 同 ト ・ ヨ ト ・ ヨ ト

Problem

Integrate
$$\int \frac{x^2+2x+3}{(x-1)(x+1)^2} dx$$
.

Solution

• First, solve for

$$\frac{x^2 + 2x + 3}{(x - 1)(x + 1)^2} = \frac{A_1}{x - 1} + \frac{A_2}{x + 1} + \frac{A_3}{(x + 1)^2} \Leftrightarrow$$

$$x^2 + 2x + 3 = A_1(x + 1)^2 + A_2(x - 1)(x + 1) + A_3(x - 1).$$

• Set x = 1 to find $A_1 = \frac{3}{2}$. Set x = -1 to find $A_3 = -1$. By considering the x^2 term, $A_2 = \frac{-1}{2}$.

Thus

$$\int \frac{x^2 + 2x + 3}{(x - 1)(x + 1)^2} dx = \frac{3}{2} \log |x - 1| - \frac{1}{2} \log |x + 1| + \frac{1}{x + 1} + C.$$

Problem

Integrate
$$\int \frac{3x^2+2x-2}{x^3-1} dx$$
.

Solution

• Factor
$$x^3 - 1 = (x - 1)(x^2 + x + 1) = (x - 1)((x + 1/2)^2 + \frac{3}{4})$$

• Solve for A, B, C such that

$$\frac{3x^2 + 2x - 2}{x^3 - 1} = \frac{A}{x - 1} + \frac{B(2x + 1) + C}{x^2 + x + 1} \Leftrightarrow 3x^2 + 2x - 2 = A(x^2 + x + 1) + (B(2x + 1) + C)(x - 1).$$

• *Set x* = 1 *to find A* = 1.

• Thus $2x^2 + x - 3 = (B(2x + 1) + C)(x - 1)$, so B(2x + 1) + C = 2x + 3 and B = 1, C = 2.

3

(日) (同) (日) (日) (日)

Solution

Hence

$$\int \frac{3x^2 + 2x - 2}{x^3 - 1} dx = \log|x - 1| + \log(x^2 + x + 1) + 2\int \frac{dx}{(x + 1/2)^2 + 3/4}$$

To evaluate the last integral, set $u = \sqrt{\frac{4}{3}}(x+1/2)$, $dx = \frac{\sqrt{3}}{2}du$ to obtain

$$2\int \frac{dx}{(x+1/2)^2+3/4} = \sqrt{3}\int \frac{du}{3/4(u^2+1)} = \frac{4}{\sqrt{3}}\tan^{-1}u + C$$
$$= \frac{4}{\sqrt{3}}\tan^{-1}\left(\frac{2}{\sqrt{3}}(x+1/2)\right) + C.$$

Bob Hough

October 12, 2016 32 / 36

- 32

(日) (周) (三) (三)

The inequality between the arithmetic and geometric means

Theorem

Let $x_1, x_2, ..., x_n$ be positive real numbers. Then

$$G_n = (x_1 \cdot \ldots \cdot x_n)^{\frac{1}{n}} \leq \frac{x_1 + \ldots + x_n}{n} = A_n.$$

In words, the geometric mean is less than or equal to the arithmetic mean.

Proof.

Let $f(x) = \log x$ on $(0, \infty)$. Then $f''(x) = -\frac{1}{x^2} < 0$, so f is concave. By Jensen's inequality,

$$\log(A_n) \geq \frac{\log(x_1 \cdot \ldots \cdot x_n)}{n}$$

and, exponentiating, $A_n \geq G_n$.

- 3

(日) (周) (三) (三)

Complex valued functions

Let I be an interval and let $f : I \to \mathbb{C}$ be complex valued.

- Such an f may be written as $f(x) = f_1(x) + if_2(x)$ where $f_1, f_2 : I \to \mathbb{R}$ are real valued.
- f is continuous/differentiable at a point x if and only if both f₁ and f₂ are continuous/differentiable at x. If f is differentiable at x its derivative at x is given by (the distance in the limit is the absolute value on C)

$$f'(x) = f'_1(x) + if'_2(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

• *f* is integrable on *I* if and only if both *f*₁ and *f*₂ are integrable on *I*. If *f* is integrable, its integral is given by

$$\int_a^b f(x)dx = \int_a^b f_1(x)dx + i\int_a^b f_2(x)dx.$$

Complex valued functions

- When z is a complex number, the function $f(x) = (x z)^n$, $n \ge 0$ an integer may be expanded by the binomial theorem and has real and imaginary parts that are polynomials in x, hence are continuous and differentiable.
- When n > 0 is an integer, $f(x) = \frac{1}{(x-z)^n} = \frac{(x-\overline{z})^n}{(x^2-2x\Re z+|z|^2)^n}$. The denominator is a real polynomial, so continuous and differentiable, and the numerator is of the type above, so where $x \neq z$, $\frac{1}{(x-z)^n}$ is continuous and differentiable.

Complex valued functions

The formula $\frac{d}{dx}(x-z)^n = n(x-z)^{n-1}$ which is valid for all *integer n*, may be obtained by the same algebraic manipulations used to calculate the derivative in the case that z is real: e.g. for n > 0,

$$(x+h-z)^{-n} - (x-z)^{-n}$$

$$= \left[\frac{1}{x+h-z} - \frac{1}{x-z}\right] \left[\sum_{j=0}^{n-1} \frac{1}{(x+h-z)^{n-1-j}(x-z)^j}\right]$$

$$= \frac{-h}{(x+h-z)(x-z)} \left[\sum_{j=0}^{n-1} \frac{1}{(x+h-z)^{n-1-j}(x-z)^j}\right].$$

Thus, by continuity,

$$\lim_{h \to 0} \frac{(x+h-z)^{-n} - (x-z)^{-n}}{h} = \frac{-n}{(x-z)^{n+1}}.$$

The Fundamental Theorem of Calculus can now be applied to the imaginary and real parts to obtain integration formulas that reverse the differentiation.

Bob Hough