MATH 141, FALL 2016 PRACTICE MIDTERM 1

SEPTEMBER 28

Solve 4 of 6 problems. You may quote any result stated during lecture, so
long as you represent the result accurately.
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Problem 1. Prove by induction

1=1

Solution. The proof is by induction.
Base case: n = 0. The sum is empty, hence equal to 0, which is also the
value of the RHS.

2
Inductive step: Suppose for some n > 0 that Y i* = (@) . Then
n+1 2 2
1
> it = (%) +(n+1°=(n+1)>? (%+n+1)

i=1
1 2
:<n—2|— > (n® +4n + 4)

_ <(n+ 1)2(n+2))2.

This completes the inductive step.
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Problem 2. Given a function f on N, we say lim,, ., f(n) = A if, for every
€ > 0 there exists N > 0 such that n > N implies |f(n) — A| < e. Evaluate

lim n3/2 Z \/E
k=1

n—oo

Solution. The limit has value %

To justify this, observe that the function f(x) = \/x is increasing on [0, 1].
Let s, and t, denote the lower and upper step functions for f(z) obtained
by partitioning [0, 1] into n equal subintervals and choosing the initial value
of each subinterval for s, and the final value of each subinterval for ¢,. By
the proof from lecture that increasing functions are integrable,

/01 Sp(x)dx < /01 Vrdr = ; < /Oltn(:c)d:c < /01 Sp(x)dx + w

Now write .
- 1 Jk
BN VE == \/i:/t d
n n(x)dz.
N

Thus, for each n = 1,2, ..., % < fol to(z)dr < % - %, and thus, given € > 0 in

the condition for the limit, the requirement is met by taking N = %
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Problem 3. Prove that no order can be defined in the complex field that
turns it into an ordered field.

Solution. We first make an observation: Let x # 0 be an element of an
ordered field. Then x - x is positive. Indeed, either x or —z is positive,
whence x - © = (—z) - (—x) is positive,

Suppose for contradiction that C is ordered. Then both 1 = (—1) - (—1)
and —1 = ¢ -7 are positive, contradiction.



MATH 141, FALL 2016 PRACTICE MIDTERM 1 5

Problem 4. A complex number z is said to be algebraic if there are integers
ag, ai, ..., a,, not all 0, such that

ag+ a1z + -+ a,z" = 0.

Prove that the set of algebraic numbers is countable. Is every real number
algebraic?

Solution. Let P denote the set of non-zero polynomials with integral coef-
ficients. Given a non-zero polynomial P, denote r(P) the set of roots of P.
The set Alg of algebraic numbers is

Alg= ] r(P).
pecpP
Since the set of roots of a non-zero polynomial P is finite, hence countable,
and the countable union of countable sets is countable, it suffices to prove
that P is countable.

By mapping P(z) = a,2" + a,_ 12"t + ... + ag, a, # 0 to the tuple
(an, @n-1,...,ap) € Z"' we obtain an injective map P + |J, -, Z". It there-
fore suffices to check that S = J,-, Z" is countable. Since the collection of
sets in the union is countable, it suffices to check that Z" is countable for
every n > 1. This we prove by induction.

In lecture we constructed injections f; : Z — N and f, : Z2 — N. Suppose
n > 2 and that we have an injection f, : Z" — N. Define a map f,1 :
7" — N by writing Z" = Z" x Z, and x € Z"™! as v = (x1,x2) with
x1 € Z", x9 € Z. The map f,,1 is

fov1(w1, 22) = fo(fu(r1), 72).

Note that (21, 23) — (fu(z1), 22) is an injection Z" 1 — Z2 since (f,,(71), 22) =
(fu(x)),z}) implies xo = 2, and x; = ] (since f, is an injection). Being the
composition of injective functions, f, 1 is injective, completing the proof.

There exist non-algebraic real numbers, since the set of real numbers is
uncountable, whereas the set of real algebraic numbers is a subset of the set
of all algebraic numbers, hence countable.
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Problem 5. Let A’(f) denote the average of integrable function f on an
interval [a,b]. Suppose that f is integrable on every sub-interval of [a,b]. If
a < ¢ < b, prove that there is a number ¢ satisfying 0 < ¢ < 1 such that
AP(f) = tAS(f) + (1 —t)A%(f). Thus A% is a weighted average of A¢ and AP

Solution. Set t = =2 so that 1 —¢ = y==. We check that Ab(f) = tAS(f) +
(1 —t)A%(f) as follows

A7 f>:bia/abf<x>dw

:bia {/Cf(:c)d:zﬂr/bf(:z:)dx]
Z:Zcia/f dx+l[j:cczb—c/f
= tAG(f) + (1= )AUS).
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Problem 6. Give the proof of the following theorem from lecture. Let f be
a continuous function, and suppose f(c¢) > 0. Then there is a neighborhood
N(e, d) such that f(x) > 0 for all z € N(c,?).

Solution. f is continuous at ¢ means that, for every e > 0 there exists

. . (e
9 = d(e) > 0 such that = € N(c,d) implies |f(c) — f(x)| < e. Choose € = #
to obtain such a §. Then for x € N(c,0), if f(c) >0,

@ - s <L o gw =19
while if f(c) <0,
f(:v)—f(c)<—@ = f(x)<@<0.

In either case, for all x € N(c¢,0), f(z) has the same sign as f(c).



