MATH 141, FALL 2016 MIDTERM 1

SEPTEMBER 28

Solve 4 of 6 problems. You may quote results stated during lecture, so long
as you represent the result accurately.
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Problem 1. Prove by induction

n

I o
i(i+1) n+1

1=1

Solution. Base case (n = 0): The sum is empty, and hence 0 = % is true.

Inductive step: Assume for some n > 0 that Z?Zl i(z’—li—l) = nil' Write

@ —|—1)1(n o = n}rl — n}rz. Hence, by the recursive definition of the sum notation,

then the inductive assumption,
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This completes the inductive step.
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Problem 2. Prove the following statements from the field axioms. For all a,
a-0=0-a=0. Also, 0 has no reciprocal.

Solution. Let 0 denote the additive identity and 1 denote the multiplicative
identity. Write 1 = 1+0and a = a-1 = a-(1+40), then apply the distributive
property to obtaina =a-1+a-0=a+a-0. Add the additive inverse of a
on the left on both sides, and use associativity of addition to obtain

0=(—a+a)=(—a+a)+a-0=0+a-0=a-0.

0-a = 0 follows by commutativity of multiplication. Suppose b is a reciprocal
for 0. Then 0-b=1, but 0-b=0 and 0 # 1, a contradiction.
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Problem 3. Let A be a nonempty set of real numbers which is bounded
below. Let —A be the set of all numbers —z where x € A. Prove that

inf A = —sup(—A).

Solution. Since A is non-empty and bounded below, a = inf A exists. Since
a is a lower bound for A, for all xt € A, x > a. Thus, forally € —A, y = —z
for some x € A, whence y = —x < —a. This shows that —a is an upper
bound for —A.

To check that —a is the least upper bound for — A, let b < —a be an upper
bound for —A. It follows that —b > a, and for all x € A, —x € — A, whence
—x < b, so —b < x, so —b is a lower bound for A. By definition of the inf,
—b < a, s0o —b = a and thus —a = b. This proves that —a = sup(—A).



MATH 141, FALL 2016 MIDTERM 1 5

Problem 4. Define sin™" : [0,1] — [0, 2] to be the inverse function of sinz.
Justify that sin™! is integrable and calculate

1
/ sin~!(t)dt.
0

Solution. As discussed in lecture, sin(x) is continuous and increasing on
[O, %}, with sin0 = 0 and sing = 1. It follows that sin~! is continuous
and increasing as a function [0,1] — [0, 5], hence is integrable. Let R =
[O, %} x [0,1]. As discussed in lecture,

I 1
area(R) :/ Sin(x)dx+/ sin~!(z)dz,
0 0

SO fol sin” ! (z)dr = £ — 1.
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Problem 5. State carefully the definition of a function continuous at a point
p. Then prove that the function f(z) = 1 is a continuous bijection from (0, 1)
to (1,00).

Solution. Function f is continuous at a point p if
e f is defined at p
o lim, ., f(z) exists and is equal to f(p).

As verified in homework, in an ordered field, if 0 < a < b then 0 < % < %
This proves that f(z) = 1 is strictly decreasing as a function on (0,1), and
hence maps (0,1) — (1,00), and is injective. Given y > 1, z = i satisfies
Yy = %, and 0 < x < 1. Thus f is surjective, and so bijective.

Let 0 < p < 1. To prove f(x) = % is continuous at p, given € > 0 choose

0 = min (g, }%) For z € (0,1) and |z — p| < § one has # > §. It holds

p—x
Tp

2lp — 28
_ m2$h<p <e
P 2

T
proving the continuity.

1 1':
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Problem 6. State the pigeonhole principle. Using it, prove that among 11
numbers in the range 1 to 100, two differ by at most 9.

Solution. The pigeonhole principle: Let 0 < m < n be natural numbers,
and let [m] and [n] denote the standard sets of cardinality m and n. There
does not exist an injective map [n] — [m].

Divide the range [100] into 10 equally sized sets, S; = {10(: — 1) +j: 1 <
j <10}, i = 1,2,...,9. Define f : [11] — [10] by f(i) is the index of the
set to which the ¢th number belongs. By the pigeonhole principle, f is not
injective, and hence there exists 1 < i < iy < 11 for which f(i1) = f(ia) = j,
say. Since the largest difference between two numbers in S is 9, the claim
follows.



