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o Background: discrete and continuum random surfaces
@ Part I: Convergence in law of percolation-decorated RPM
o Part Il: Conformal embedding of RPM

Joint with:
Bernardi-Sun; Sun; Garban-Sepulveda-Sun; Gwynne-Miller-Sheffield-Sun
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Random planar map

e A random planar map (RPM) M is a graph drawn in the plane,
viewed up to continuous deformations.
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Random planar map

e A random planar map (RPM) M is a graph drawn in the plane,
viewed up to continuous deformations.

@ A triangulation is a planar map where all the faces have three edges.
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Random planar map

e A random planar map (RPM) M is a graph drawn in the plane,
viewed up to continuous deformations.

@ A triangulation is a planar map where all the faces have three edges.

@ Given n,m € N let M be a uniformly chosen triangulation with n
vertices and m boundary vertices.
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Liouville Quantum Gravity (LQG)

@ Let v €(0,2).
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Liouville Quantum Gravity (LQG)

@ Let vy € (0,2).
@ If h:[0,1]*> — R is smooth, then e”"®)dx dy defines an area measure on [0, 1]%.

@ LQG is the surface we get by letting h be the Gaussian free field (GFF).
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Liouville Quantum Gravity (LQG)

Let v € (0,2).
If h:[0,1]> — R is smooth, then " dx dy defines an area measure on [0, 1].
LQG is the surface we get by letting h be the Gaussian free field (GFF).

The GFF is a random distribution describing a natural perturbation of a harmonic
function.

The definition of LQG does not make literal sense, since h is not a function.
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LQG is the surface we get by letting h be the Gaussian free field (GFF).

The GFF is a random distribution describing a natural perturbation of a harmonic
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The definition of LQG does not make literal sense, since h is not a function.

@ The area measure can be defined rigorously by regularizing.
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Liouville Quantum Gravity (LQG)

Let v € (0,2).
If h:[0,1]> — R is smooth, then " dx dy defines an area measure on [0, 1]°.
LQG is the surface we get by letting h be the Gaussian free field (GFF).

The GFF is a random distribution describing a natural perturbation of a harmonic
function.

The definition of LQG does not make literal sense, since h is not a function.

@ The area measure can be defined rigorously by regularizing.

@ The area measure is non-atomic and has full support, but is singular with respect
to Lebesgue measure.

&5
/‘ "f /’f‘v~¢ discrete GFF, by J. Miller.

\v

Holden (MIT) Uniform RPM and LQG November 2, 2017 4 /27



[llustration of LQG area measure

LQG defines a random area measure e?" dx dy in the square.

Fix 6 > 0. Divide squares of LQG area above §.
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[llustration of LQG area measure
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LQG defines a random area measure 7" dx dy in the square.

Fix § > 0. Divide squares of LQG area above §.
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[llustration of LQG area measure

i

LQG defines a random area measure 7" dx dy in the square.

Fix § > 0. Divide squares of LQG area above §.
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[llustration of LQG area measure

Area measure of random surface e"dx dy, v = 1.5, by J. Miller
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[llustration of LQG area measure

v=1.75

Area measure of random surface e”"dx dy, by J. Miller
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Convergence of RPM to LQG

@ LQG is the conjectured or proven scaling limit of a RPM.
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@ LQG is the conjectured or proven scaling limit of a RPM.

@ Conjectural relationship between RPM and LQG used by physicists to
calculate exponents associated with statistical mechanics models.
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Convergence of RPM to LQG

@ LQG is the conjectured or proven scaling limit of a RPM.
@ Conjectural relationship between RPM and LQG used by physicists to
calculate exponents associated with statistical mechanics models.
Topologies for convergence of RPM:
@ Metric space structure (Gromov-Hausdorff topology)
o Le Gall'l3, Miermont’13, and others
e Conformal structure (weak topology for measures on C)

@ Statistical physics decorations (peanosphere topology)
e Duplantier-Miller-Sheffield'14 and others
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Convergence of RPM to LQG

@ LQG is the conjectured or proven scaling limit of a RPM.
@ Conjectural relationship between RPM and LQG used by physicists to
calculate exponents associated with statistical mechanics models.
Topologies for convergence of RPM:
@ Metric space structure (Gromov-Hausdorff topology)
o Le Gall'l3, Miermont’13, and others
e Conformal structure (weak topology for measures on C) Part 2 of talk

@ Statistical physics decorations (peanosphere topology) Part 1 of talk
e Duplantier-Miller-Sheffield'14 and others
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Conjecture: Conformally embedded RPM = LQG

@ Let M be a uniformly chosen RPM, and let ¢ : V(M) — S? be a discrete
conformal map.

RPM M embedded RPM

Figure by Nicolas Curien.
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Conjecture: Conformally embedded RPM = LQG

@ Let M be a uniformly chosen RPM, and let ¢ : V(M) — S? be a discrete

conformal map.
@ We get an area measure fig on S? by considering (renormalized) counting measure

induced by V(M).

RPM M embedded RPM

Figure by Nicolas Curien.
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Conjecture: Conformally embedded RPM = LQG

@ Let M be a uniformly chosen RPM, and let ¢ : V(M) — S? be a discrete
conformal map.

@ We get an area measure iy on S? by considering (renormalized) counting measure
induced by V(M).

@ [i4 is conjectured to converge in law to JS/T-LQG area measure [i.

RPM M embedded RPM

Figure by Nicolas Curien.
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Discrete conformal embeddings

o Circle packing

@ Riemann uniformization

e Tutte embedding (harmonic)
o Cardy embedding

circle packing (sphere topology) circle packing (disk topology)
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Discrete conformal embeddings

o Circle packing
@ Riemann uniformization

e Tutte embedding (harmonic)

/NFINE
T

Random planar map Riemannian manifold

o Cardy embedding
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Discrete conformal embeddings

Circle packing
Riemann uniformization

Tutte embedding (harmonic)

Cardy embedding

Uniformization theorem: For any simply connected Riemann surface M
there is a conformal map ¢ from M to either D, C or SZ.

ASTAANN
A
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Discrete conformal embeddings

Circle packing
Riemann uniformization

Tutte embedding (harmonic)

Cardy embedding

Tutte embedding
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Discrete conformal embeddings

o Circle packing

@ Riemann uniformization

e Tutte embedding (harmonic)
o Cardy embedding
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@ Background: discrete and continuum random surfaces
@ Part I: Convergence in law of percolation-decorated RPM
o Part Il: Conformal embedding of RPM
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Discrete and continuum decorated surfaces

We decorate the surfaces with percolation and CLEg, respectively:

(h,T)

percolation P on RPM M CLE¢ I on /8/3-LQG h
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Percolation on RPM

o
=
Lo ()

o Consider a uniform triangulation M of the disk.
o Critical percolation probability pgit® = 1/2 (Angel’03).

(o}
@ We get a percolation P by coloring the inner vertices uniformly and

independently blue or yellow, and coloring the boundary vertices blue.
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The conformal loop ensemble CLEq

@ The conformal loop ensemble CLEs I is a countable collection of non-crossing
loops in some simply connected subset of C.
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The conformal loop ensemble CLEg

@ The conformal loop ensemble CLEs I is a countable collection of non-crossing
loops in some simply connected subset of C.

@ CLEs describes the scaling limit of the cluster interfaces for critical percolation on
the triangular lattice, and is conformally invariant.
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The conformal loop ensemble CLEg
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The conformal loop ensemble CLEg

@ The conformal loop ensemble CLEs I is a countable collection of non-crossing
loops in some simply connected subset of C.

@ CLEs describes the scaling limit of the cluster interfaces for critical percolation on
the triangular lattice, and is conformally invariant.

@ An instance of CLEs I is equivalent to the following two objects w and 7:

@ w encodes information about quad crossings

Q
C D
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The conformal loop ensemble CLEg

@ The conformal loop ensemble CLEs I is a countable collection of non-crossing
loops in some simply connected subset of C.

@ CLEs describes the scaling limit of the cluster interfaces for critical percolation on
the triangular lattice, and is conformally invariant.

@ An instance of CLEs I is equivalent to the following two objects w and 7:

@ w encodes information about quad crossings
e 7 is a space-filling Schramm-Loewner evolution SLEs

B A

Q
C D
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Conjectured relation between decorated RPM and LQG

Physics conjectures:

(a) M = h as embedded surfaces

embedded RPM M \/8/3-LQG h
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Conjectured relation between decorated RPM and LQG

Physics conjectures:
(a) M = h as embedded surfaces
(b) (M, P)= (h,T) as embedded decorated surfaces

. T =
embedded (M, P) 1/8/3-LQG h and CLEs T
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Conjectured relation between decorated RPM and LQG

Physics conjectures:
(a) M = h as embedded surfaces
(b) (M, P)=-(h,T) as embedded decorated surfaces
(c) More generally: other decorations give v-LQG and CLE,

> 1 =
embedded (M, P) 1/8/3-LQG h and CLEs '
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Conjectured relation between decorated RPM and LQG

Physics conjectures:
(a) M = h as embedded surfaces
(b) (M, P)=-(h,T) as embedded decorated surfaces
(c) More generally: other decorations give v-LQG and CLE,

> 1 =
embedded (M, P) 1/8/3-LQG h and CLEs '
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Peanosphere convergence

bijection

map-+percolation o walk (W) kefn)

(M, P)

|l convergence

LQG+CLE meaSILrjblhty Brownian excursion

(h, F) (Zt)te[o,u
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Peanosphere conv

bijection

map-+percolation o walk (W) kefn)

(M, P)

|l convergence

LQG+CLE meaﬂgblhty Brownian excursion

(h, F) (Zt)te[o,u

The result that W = Z (after rescaling) means the following.

Proposition 1

(M, P) converges to (h,T) in the peanosphere topology as introduced by
Duplantier-Miller-Sheffield'14.
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Peanosphere encoding of discrete surface

Bernardi’07, Bernardi-H.-Sun’17: Bijection between
(1) site-percolated rooted triangulation (M, P) of disk with n+ 1 edges.
(2) cone excursion W length n, steps a = (1,0), b =(0,1), c = (-1, -1)

( M, P) 2 a
babcbbabecace

@ Properties of the percolation clusters of (M, P) nicely encoded by W.
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Peanosphere encoding of discrete surface

Bernardi’07, Bernardi-H.-Sun’17: Bijection between
(1) site-percolated rooted triangulation (M, P) of disk with n+ 1 edges.
(2) cone excursion W length n, steps a = (1,0), b= (0,1), c = (-1, —-1)

/N Zoo e
A LM
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Peanosphere encoding of discrete surface

Bernardi’07, Bernardi-H.-Sun’17: Bijection between
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Peanosphere encoding of discrete surface

Bernardi’07, Bernardi-H.-Sun’17: Bijection between
(1) site-percolated rooted triangulation (M, P) of disk with n+ 1 edges.
(2) cone excursion W length n, steps a = (1,0), b =(0,1), c = (-1, -1)

(M. P) 2 0
babcbbabecace

@ Properties of the percolation clusters of (M, P) nicely encoded by W.
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Loop areas, loop lengths, and pivotal measure: discrete
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Loop areas, loop lengths, and pivotal measure: discrete

o Let a(C) denote the area of the cluster C.
o Let [(C) denote the boundary length of the cluster C.

o Let Cq,..., Cx denote the k clusters with longest boundary.
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Loop areas, loop lengths, and pivotal measure: discrete

Let a(C) denote the area of the cluster C.
Let [(C) denote the boundary length of the cluster C.
Let G, ..., Ck denote the k clusters with longest boundary.

Pivotal point: vertex with the property that changing its color makes
clusters merge or split

Let p1(C) and p2(C) denote counting measure on the pivotal points.

e Let p3(C, C') and p4(C, C’) denote counting measure on the pivotal
points between C and C'.

e () S

(1) p ) p3(C,C7) (4) pa(C,C")
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Loop areas, loop lengths, and pivotal measure: continuum

o Consider a 1/8/3-LQG surface, and decorate it with an independent
CLEg T.
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Loop areas, loop lengths, and pivotal measure: continuum

o Consider a 1/8/3-LQG surface, and decorate it with an independent
CLEg T.

@ Let a(L) denote the LQG area enclosed by the CLE loop L.
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Loop areas, loop lengths, and pivotal measure: continuum

o Consider a 1/8/3-LQG surface, and decorate it with an independent
CLEg T.

@ Let a(L) denote the LQG area enclosed by the CLE loop L.
@ Let /(L) denote the LQG length of the CLE loop L.
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Loop areas, loop lengths, and pivotal measure: continuum

o Consider a 1/8/3-LQG surface, and decorate it with an independent
CLEg T.

@ Let a(L) denote the LQG area enclosed by the CLE loop L.
@ Let /(L) denote the LQG length of the CLE loop L.
@ Let pi(L) and pp(L) denote the LQG pivotal measure of L.
o Let p3(L, L) and ps(L, L") denote the LQG pivotal measure between
Land L.
7
| \?}\Q )
TN
YU

(2) p2(L) (3) p3(L, L")
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Convergence of loops and pivotal measure

@ (,..., C are the k clusters of the triangulation with longest boundary.
@ a, [, and pn, denote loop area, loop length, and pivotal measure, respectively.

@ Similar continuum notation; L, ..., Lx denote the k longest loops.

Theorem 1 (Bernardi-H.-Sun'17)

Consider a percolation decorated triangulation (M, P) with disk topology. For any k € N
the following quantities

a(c:/)7 [(CJ)7 pl(cj)7 p2(CJ)7 p3(C'7CJ)7 p4(C'7CJ)7 1716{1771(}

converge jointly in law to the associated continuum quantities

a(Lj)v Z(Lj)a Pl(Lj), p2(Lj)7 p3(Li7Lj)v p4(L,',L_,'), i7j€{17"'7k}'
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Recall that (M, P) = (h,T) in the peanosphere topology:

lati bijection
maerj\I}eI}g()) ation o walk (Wk)ke[n]
| convergence
LQG+CLE measurability Brownian excursion
(ha F) (Zt)tE[O,l]
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Recall that (M, P) = (h,T) in the peanosphere topology:

) bijection
map-+percolation o walk (W) petr
(M, P) onvergence of walR
and loop quantities
. encoded by walk
LQGH+CLE measurability Brownian excursion
(h, F) (Zt)te[o,l]
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@ Background: discrete and continuum random surfaces
@ Part I: Convergence in law of percolation-decorated RPM
@ Part Il: Conformal embedding of RPM
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Conformal embedding of planar maps: our goal

We want a map ¢ : V(M) — S? such that

He = 1,

where i, is the measure on S? induced by renormalized counting measure of V/(M), and

wis \/8/3-LQG area measure.

random planar map (RPM) M embedded RPM
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Conformal embedding of planar maps: our goal

We want a map ¢ : V(M) — T such that

Ho = 1,

where [i4 is the measure on T induced by renormalized counting measure of V(M), and

wis \/8/3-LQG area measure.

2 .

b B
random planar map (RPM) M embedded RPM
Holden (MIT)

Uniform RPM and LQG November 2, 2017 21 /27



Conformal embedding of planar maps: our goal

. RPM
metric N
measure N conformal
LeGall N
13 AN
Mlol-v?nont 4

Miller-Sheffield
Brownian map -« %" v/8/3-LQG
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Cardy embedding

@ Idea of Cardy embedding: Use properties of percolation on the RPM M to
determine ¢ : V(M) — T.
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Cardy embedding

@ Idea of Cardy embedding: Use properties of percolation on the RPM M to
determine ¢ : V(M) — T.

@ There is a bijection between x € T and triples (p1, p2, p3) of the standard
2-simplex, which is defined in terms of CLEs crossing events (Smirnov'01).
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@ Idea of Cardy embedding: Use properties of percolation on the RPM M to
determine ¢ : V(M) — T.

@ There is a bijection between x € T and triples (p1, p2, p3) of the standard
2-simplex, which is defined in terms of CLEs crossing events (Smirnov'01).

@ Given v € V(M) we can obtain an triple (p1, p2, p3) by considering percolation
crossing probabilities on M.
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Cardy embedding

Idea of Cardy embedding: Use properties of percolation on the RPM M to
determine ¢ : V(M) — T.

There is a bijection between x € T and triples (p1, p2, p3) of the standard
2-simplex, which is defined in terms of CLEs crossing events (Smirnov'01).

Given v € V(M) we can obtain an triple (p1, p2, p3) by considering percolation
crossing probabilities on M.

Let ¢(v) be the point x € T associated with the triple (p1, p2, p3) of v.
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Convergence of the Cardy embedding

@ We know that (M, P) = (h,T) in the peanosphere topology.

b (M, P) b (M, P)
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Convergence of the Cardy embedding

@ We know that (M, P) = (h,T) in the peanosphere topology.
@ What is the limit of (M, P, P) for P and P independent?
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Convergence of the Cardy embedding

@ We know that (M, P) = (h,T) in the peanosphere topology.
@ What is the limit of (M, P, P) for P and P independent?
@ We know that subsequentially, ((M, P), (M, ﬁ)) = ((h,T), (E, F))

b (M, P) b (M, P)
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Convergence of the Cardy embedding

We know that (M, P) = (h,T) in the peanosphere topology.
What is the limit of (M, P, P) for P and P independent?
We know that subsequentially, (M, P), (M, P)) = ((h,T), (h,T)).
We believe that

(@) h=h _

(b) T and T are independent

@ In other words, we believe that (M, P, ﬁ) = (h, F,F) forTand T independent.

a a

b (M, P) b (M, P)
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Convergence of the Cardy embedding

@ We know that (M, P) = (h,T) in the peanosphere topology.
@ What is the limit of (M, P, P) for P and P independent?
® We know that subsequentially, (M, P), (M, P)) = ((h,T), (h,T)).
@ We believgvthat
(@) h=h _
(b) T and T are independent
@ In other words, we believe that (M, P, ;5) = (h, F,F) for [ and T independent.

@ Some variant of (a) and (b) imply:

measure fi
metric d
CLEg loops T’

measure fig
metric dg
loops I'

[\
Cardy embedded map (schematic drawing) 1/8/3-LQG/Brownian disk
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Convergence of the Cardy embedding

@ We know that (M, P) = (h,T) in the peanosphere topology.
@ What is the limit of (M, P, P) for P and P independent?
@ We know that subsequentially, ((M, P), (M, ﬁ)) = ((h,T), (h, F))
@ We believe that
(@) h=h _
(b) T and T are independent
@ In other words, we believe that (M, P, ﬁ) = (h, F,F) forTand T independent.

@ Some variant of (a) and (b) imply:

Theorem 2 (Gwynne-H.-Miller-Sheffield-Sun'17; assuming (a) & (b))

For a Cardy embedded map with percolation, (fis, dg, T s) = (1, d,T).
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Joint convergence in metric and peanosphere topology

o Subsequentially, (M, (M, P),(M, P)) = (K, (h,T),(h,T)), where

o W,h,h LQG and I',T CLEs
e lst coordinate: metric topology
e 2nd and 3rd coordinates: peanosphere topology
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Joint convergence in metric and peanosphere topology

o Subsequentially, (M, (M, P), (M, ﬁ)) = (W, (h, r),(E,F)) where
o h,h h LQG and I',T CLEg
e 1st coordinate: metric topology
e 2nd and 3rd coordinates: peanosphere topology

@ Joint convergence in metric and peanosphere topology:
(M, (M, P)) = (h,(h,T))  (M,(M,P)) = (h,(h,T)).

Gwynne-Miller proved joint metric and peanosphere convergence for a
map with a single percolation interface. We iterate this result.

One percolation interface All percolation interfaces
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Joint convergence in metric and peanosphere topology

o Subsequentially, (M, (M, P),(M, P)) = (K, (h,T),(h,T)), where

o W,h,h LQG and I',T CLEs
e lst coordinate: metric topology
e 2nd and 3rd coordinates: peanosphere topology

@ Joint convergence in metric and peanosphere topology:
(M,(M,P)) = (h,(n,T))  (M,(M,P))= (h,(h.T)).

Gwynne-Miller proved joint metric and peanosphere convergence for a
map with a single percolation interface. We iterate this result.

@ Combining the above, subsequentially

(M, (M, P),(M,P)) = (h,(h,T),(h,T)).
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Joint convergence in metric and peanosphere topology

o Subsequentially, (M, (M, P),(M, P)) = (K, (h,T),(h,T)), where

o W,h,h LQG and I',T CLEs
e lst coordinate: metric topology
e 2nd and 3rd coordinates: peanosphere topology

@ Joint convergence in metric and peanosphere topology:
(M,(M,P)) = (h,(n,T))  (M,(M,P))= (h,(h.T)).

Gwynne-Miller proved joint metric and peanosphere convergence for a
map with a single percolation interface. We iterate this result.

@ Combining the above, subsequentially
(M, (M, P),(M,P)) = (h,(h,T),(h,T)).

o In particular, h = h, so (a) is established.
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Independent percolations give independent CLEs

@ Subsequentially, (M, P, ﬁ) = (h, F,F) for I and T not necessarily independent.

@ We want to prove (b) independence of I and T.
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@ Dynamical percolation (DP) (P:):>0 on M: Each vertex is associated with a
Poisson clock with rate n7*/# and its color is resampled every time its clock rings.
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Independent percolations give independent CLEs

@ Subsequentially, (M, P, ﬁ) = (h, F,F) for I and T not necessarily independent.
@ We want to prove (b) independence of I and T.

@ Dynamical percolation (DP) (P:):>0 on M: Each vertex is associated with a
Poisson clock with rate n~'/ and its color is resampled every time its clock rings.

@ Independence of ' and T can be reduced to proving the following

(1) (M, (Pt)e>0) = (h,(Tt)e>0), for (T't)e>o0 continuum quantum DP (QDP).
(2) (T¢)e>o0 is mixing, i.e., I'¢ is asymptotically independent of .
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Independent percolations give independent CLEs

@ Subsequentially, (M, P, /3) = (h, F,F) for I and T not necessarily independent.
@ We want to prove (b) independence of I and T.
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@ Independence of ' and T can be reduced to proving the following

(1) (M, (Pt)e=0) = (h,(Tt)e>0), for (T't)e>o0 continuum quantum DP (QDP).
(2) (F¢)e=0 is mixing, i.e., I'¢ is asymptotically independent of .

Holden (MIT) Uniform RPM and LQG November 2, 2017 26 / 27



Independent percolations give independent CLEs

@ Subsequentially, (M, P, /3) = (h, F,F) for I and T not necessarily independent.
@ We want to prove (b) independence of I and T.

@ Dynamical percolation (DP) (P:):>0 on M: Each vertex is associated with a
Poisson clock with rate n='/* and its color is resampled every time its clock rings.

@ Independence of ' and T can be reduced to proving the following

(1) (M, (Pt)e=0) = (h,(Tt)e>0), for (T't)e>o0 continuum quantum DP (QDP).
(2) (F¢)e=0 is mixing, i.e., I'¢ is asymptotically independent of .

Holden (MIT) Uniform RPM and LQG November 2, 2017 26 / 27



Independent percolations give independent CLEs

@ Subsequentially, (M, P, /3) = (h, F,F) for I and T not necessarily independent.
@ We want to prove (b) independence of I and T.

@ Dynamical percolation (DP) (P:):>0 on M: Each vertex is associated with a
Poisson clock with rate n='/* and its color is resampled every time its clock rings.

@ Independence of ' and T can be reduced to proving the following

(1) (M, (Pt)e=0) = (h,(Tt)e>0), for (T't)e>o0 continuum quantum DP (QDP).
(2) (F¢)e=0 is mixing, i.e., I'¢ is asymptotically independent of .

Holden (MIT) Uniform RPM and LQG November 2, 2017 26 / 27



Independent percolations give independent CLEs

@ Subsequentially, (M, P, /3) = (h, F,F) for I and T not necessarily independent.
@ We want to prove (b) independence of I and T.

@ Dynamical percolation (DP) (P:):>0 on M: Each vertex is associated with a
Poisson clock with rate n='/* and its color is resampled every time its clock rings.

@ Independence of ' and T can be reduced to proving the following

(1) (M, (Pt)e=0) = (h,(Tt)e>0), for (T't)e>o0 continuum quantum DP (QDP).
(2) (F¢)e=0 is mixing, i.e., I'¢ is asymptotically independent of .

Holden (MIT) Uniform RPM and LQG November 2, 2017 26 / 27



Independent percolations give independent CLEs

@ Subsequentially, (M, P, /3) = (h, F,F) for I and T not necessarily independent.
@ We want to prove (b) independence of I and T.

@ Dynamical percolation (DP) (P:):>0 on M: Each vertex is associated with a
Poisson clock with rate n='/* and its color is resampled every time its clock rings.

@ Independence of ' and T can be reduced to proving the following

(1) (M, (Pt)e=0) = (h,(Tt)e>0), for (T't)e>o0 continuum quantum DP (QDP).
(2) (F¢)e=0 is mixing, i.e., I'¢ is asymptotically independent of .

N\

Holden (MIT) Uniform RPM and LQG November 2, 2017 26 / 27



Independent percolations give independent CLEs

@ Subsequentially, (M, P, /3) = (h, F,F) for I and T not necessarily independent.
@ We want to prove (b) independence of I and T.

@ Dynamical percolation (DP) (P:):>0 on M: Each vertex is associated with a
Poisson clock with rate n='/* and its color is resampled every time its clock rings.

@ Independence of ' and T can be reduced to proving the following

(1) (M, (Pt)e=0) = (h,(Tt)e>0), for (T't)e>o0 continuum quantum DP (QDP).
(2) (F¢)e=0 is mixing, i.e., I'¢ is asymptotically independent of .

Holden (MIT) Uniform RPM and LQG November 2, 2017 26 / 27



Independent percolations give independent CLEs

@ Subsequentially, (M, P, ﬁ) = (h, F,F) for I and T not necessarily independent.
@ We want to prove (b) independence of I and T.

@ Dynamical percolation (DP) (P:):;>0 on M: Each vertex is associated with a
Poisson clock with rate n='/# and its color is resampled every time its clock rings.

@ Independence of ' and T can be reduced to proving the following

(1) (M, (Pt)e>0) = (h,(Tt)e>0), for (Tt)e>o0 continuum quantum DP (QDP).
(2) (T¢)e>o0 is mixing, i.e., I'¢ is asymptotically independent of .

. (1) cut-off

(2) mixing convergence
(T, (P)is0) = (h,(T¢))e=0 — (M, (P)i0)
QDP on lattice Continuum QDP DP on RPM
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@ Subsequentially, (M, P, ﬁ) = (h, F,F) for I and T not necessarily independent.
@ We want to prove (b) independence of I and T.

@ Dynamical percolation (DP) (P:):;>0 on M: Each vertex is associated with a
Poisson clock with rate n='/# and its color is resampled every time its clock rings.
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Thanks!
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