Convergence of percolation-decorated triangulations to SLE-decorated LQG

Nina Holden

(with Bernardi, Garban, Gwynne, Miller, Sepulveda, Sheffield, and Sun)

Massachusetts Institute of Technology

ninah@math.mit.edu

November 2, 2017

Outline

- Background: discrete and continuum random surfaces
- Part I: Convergence in law of percolation-decorated RPM
- Part II: Conformal embedding of RPM

Joint with:

Bernardi-Sun; Sun; Garban-Sepulveda-Sun; Gwynne-Miller-Sheffield-Sun

random planar map (RPM)

Uniform RPM and LQG

Holden (MIT)

• A random planar map (RPM) *M* is a graph drawn in the plane, viewed up to continuous deformations.

• A random planar map (RPM) *M* is a graph drawn in the plane, viewed up to continuous deformations.

M'

• A random planar map (RPM) *M* is a graph drawn in the plane, viewed up to continuous deformations.

- A random planar map (RPM) *M* is a graph drawn in the plane, viewed up to continuous deformations.
- A triangulation is a planar map where all the faces have three edges.

- A random planar map (RPM) *M* is a graph drawn in the plane, viewed up to continuous deformations.
- A triangulation is a planar map where all the faces have three edges.
- Given $n, m \in \mathbb{N}$ let M be a **uniformly** chosen triangulation with n vertices and m boundary vertices.

• Let $\gamma \in (0, 2)$.

Image: Image:

æ

- Let $\gamma \in (0, 2)$.
- If $h: [0,1]^2 \to \mathbb{R}$ is smooth, then $e^{\gamma h(z)} dx dy$ defines an area measure on $[0,1]^2$.

- Let γ ∈ (0, 2).
- If $h: [0,1]^2 \to \mathbb{R}$ is smooth, then $e^{\gamma h(z)} dx dy$ defines an area measure on $[0,1]^2$.
- LQG is the surface we get by letting h be the Gaussian free field (GFF).

- Let γ ∈ (0, 2).
- If $h: [0,1]^2 \to \mathbb{R}$ is smooth, then $e^{\gamma h(z)} dx dy$ defines an area measure on $[0,1]^2$.
- LQG is the surface we get by letting h be the Gaussian free field (GFF).
- The GFF is a random **distribution** describing a natural perturbation of a harmonic function.
- The definition of LQG does not make literal sense, since *h* is not a function.

discrete GFF, by J. Miller.

- Let γ ∈ (0, 2).
- If $h: [0,1]^2 \to \mathbb{R}$ is smooth, then $e^{\gamma h(z)} dx dy$ defines an area measure on $[0,1]^2$.
- LQG is the surface we get by letting h be the Gaussian free field (GFF).
- The GFF is a random **distribution** describing a natural perturbation of a harmonic function.
- The definition of LQG does not make literal sense, since *h* is not a function.
- The area measure can be defined rigorously by regularizing.

discrete GFF, by J. Miller.

- Let $\gamma \in (0, 2)$.
- If $h: [0,1]^2 \to \mathbb{R}$ is smooth, then $e^{\gamma h(z)} dx dy$ defines an area measure on $[0,1]^2$.
- LQG is the surface we get by letting h be the Gaussian free field (GFF).
- The GFF is a random **distribution** describing a natural perturbation of a harmonic function.
- The definition of LQG does not make literal sense, since h is not a function.
- The area measure can be defined rigorously by regularizing.
- The area measure is non-atomic and has full support, but is singular with respect to Lebesgue measure.

discrete GFF, by J. Miller.

LQG defines a random area measure $e^{\gamma h} dx dy$ in the square.

LQG defines a random area measure $e^{\gamma h} dx dy$ in the square.

LQG defines a random area measure $e^{\gamma h} dx dy$ in the square.

LQG defines a random area measure $e^{\gamma h} dx dy$ in the square.

LQG defines a random area measure $e^{\gamma h} dx dy$ in the square.

LQG defines a random area measure $e^{\gamma h} dx dy$ in the square.

Area measure of random surface $e^{\gamma h} dx dy$, $\gamma = 1.5$, by J. Miller

$\gamma = 1$ $\gamma = 1.5$ $\gamma = 1.75$

Area measure of random surface $e^{\gamma h} dx dy$, by J. Miller

< A > <

• LQG is the conjectured or proven scaling limit of a RPM.

- LQG is the conjectured or proven scaling limit of a RPM.
- Conjectural relationship between RPM and LQG used by physicists to calculate exponents associated with statistical mechanics models.

- LQG is the conjectured or proven scaling limit of a RPM.
- Conjectural relationship between RPM and LQG used by physicists to calculate exponents associated with statistical mechanics models.

Topologies for convergence of RPM:

- Metric space structure (Gromov-Hausdorff topology)
 - Le Gall'13, Miermont'13, and others
- Conformal structure (weak topology for measures on \mathbb{C})
- Statistical physics decorations (peanosphere topology)
 - Duplantier-Miller-Sheffield'14 and others

- LQG is the conjectured or proven scaling limit of a RPM.
- Conjectural relationship between RPM and LQG used by physicists to calculate exponents associated with statistical mechanics models.

Topologies for convergence of RPM:

- Metric space structure (Gromov-Hausdorff topology)
 - Le Gall'13, Miermont'13, and others
- $\bullet\,$ Conformal structure (weak topology for measures on $\mathbb{C})$ Part 2 of talk
- Statistical physics decorations (peanosphere topology) Part 1 of talk
 - Duplantier-Miller-Sheffield'14 and others

Conjecture: Conformally embedded RPM \Rightarrow LQG

Let M be a uniformly chosen RPM, and let φ : V(M) → S² be a discrete conformal map.

RPM M

embedded RPM

Figure by Nicolas Curien.

Holden (MIT)

Uniform RPM and LQG

November 2, 2017 8 / 27

Conjecture: Conformally embedded RPM \Rightarrow LQG

- Let M be a uniformly chosen RPM, and let φ : V(M) → S² be a discrete conformal map.
- We get an area measure μ_φ on S² by considering (renormalized) counting measure induced by V(M).

RPM M

Figure by Nicolas Curien.

Holden (MIT)

Uniform RPM and LQG

< @ ▶ < 볼 ▶ < 볼 ▶ . 월 November 2, 2017

8 / 27

embedded RPM

Conjecture: Conformally embedded RPM \Rightarrow LQG

- Let M be a uniformly chosen RPM, and let φ : V(M) → S² be a discrete conformal map.
- We get an area measure μ̂_φ on S² by considering (renormalized) counting measure induced by V(M).
- $\hat{\mu}_{\phi}$ is **conjectured** to converge in law to $\sqrt{8/3}$ -LQG area measure μ .

RPM M

embedded RPM

Figure by Nicolas Curien.

Uniform RPM and LQG

November 2, 2017 8 / 27

- Circle packing
- Riemann uniformization
- Tutte embedding (harmonic)
- Cardy embedding

circle packing (sphere topology)

circle packing (disk topology)

Holden (MIT)

Uniform RPM and LQG

November 2, 2017 9 / 27

- Circle packing
- Riemann uniformization
- Tutte embedding (harmonic)
- Cardy embedding

Random planar map

Riemannian manifold

Uniform RPM and LQG

- Circle packing
- Riemann uniformization
- Tutte embedding (harmonic)
- Cardy embedding

Uniformization theorem: For any simply connected Riemann surface M there is a conformal map ϕ from M to either \mathbb{D} , \mathbb{C} or \mathbb{S}^2 .

- Circle packing
- Riemann uniformization
- Tutte embedding (harmonic)
- Cardy embedding

Tutte embedding

- Circle packing
- Riemann uniformization
- Tutte embedding (harmonic)
- Cardy embedding

Outline

- Background: discrete and continuum random surfaces
- Part I: Convergence in law of percolation-decorated RPM
- Part II: Conformal embedding of RPM

Discrete and continuum decorated surfaces

We decorate the surfaces with percolation and CLE₆, respectively:

percolation P on RPM M

Percolation on RPM

- Consider a uniform triangulation *M* of the disk.
- Critical percolation probability $p_{c}^{site} = 1/2$ (Angel'03).
- We get a percolation *P* by coloring the inner vertices uniformly and independently blue or yellow, and coloring the boundary vertices blue.
Percolation on RPM

- Consider a uniform triangulation *M* of the disk.
- Critical percolation probability $p_{c}^{site} = 1/2$ (Angel'03).
- We get a percolation *P* by coloring the inner vertices uniformly and independently blue or yellow, and coloring the boundary vertices blue.

 The conformal loop ensemble CLE₆ Γ is a countable collection of non-crossing loops in some simply connected subset of C.

- The conformal loop ensemble CLE₆ Γ is a countable collection of non-crossing loops in some simply connected subset of C.
- CLE₆ describes the scaling limit of the cluster interfaces for critical percolation on the triangular lattice, and is conformally invariant.

- The conformal loop ensemble CLE₆ Γ is a countable collection of non-crossing loops in some simply connected subset of C.
- CLE₆ describes the scaling limit of the cluster interfaces for critical percolation on the triangular lattice, and is conformally invariant.

- The conformal loop ensemble CLE₆ Γ is a countable collection of non-crossing loops in some simply connected subset of C.
- CLE₆ describes the scaling limit of the cluster interfaces for critical percolation on the triangular lattice, and is conformally invariant.
- An instance of $CLE_6 \Gamma$ is **equivalent** to the following two objects ω and η :
 - ω encodes information about quad crossings

- The conformal loop ensemble CLE₆ Γ is a countable collection of non-crossing loops in some simply connected subset of C.
- CLE₆ describes the scaling limit of the cluster interfaces for critical percolation on the triangular lattice, and is conformally invariant.
- An instance of $CLE_6 \Gamma$ is **equivalent** to the following two objects ω and η :
 - ω encodes information about quad crossings
 - η is a space-filling Schramm-Loewner evolution SLE₆

Physics conjectures:

(a) $M \Rightarrow h$ as embedded surfaces

Physics conjectures:

- (a) $M \Rightarrow h$ as embedded surfaces
- (b) $(M, P) \Rightarrow (h, \Gamma)$ as embedded decorated surfaces

Physics conjectures:

- (a) $M \Rightarrow h$ as embedded surfaces
- (b) $(M, P) \Rightarrow (h, \Gamma)$ as embedded decorated surfaces
- (c) More generally: other decorations give γ -LQG and CLE_{κ}

embedded (M, P)

 $\sqrt{8/3}$ -LQG h and CLE₆ Γ

Physics conjectures:

- (a) $M \Rightarrow h$ as embedded surfaces
- (b) $(M, P) \Rightarrow (h, \Gamma)$ as embedded decorated surfaces
- (c) More generally: other decorations give γ -LQG and CLE_{κ}

embedded (M, P)

 $\sqrt{8/3}$ -LQG h and CLE₆ Γ

Uniform RPM and LQG

The result that $W \Rightarrow Z$ (after rescaling) means the following.

Proposition 1 (M, P) converges to (h, Γ) in the **peanosphere topology** as introduced by Duplantier-Miller-Sheffield'14.

Holden (MIT)

Uniform RPM and LQG

November 2, 2017 15 / 27

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Holden (MIT)

November 2, 2017 15 / 27

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

Properties of the percolation clusters of (M, P) nicely encoded by W.

Bernardi'07, Bernardi-H.-Sun'17: Bijection between

- (1) site-percolated rooted triangulation (M, P) of disk with n + 1 edges.
- (2) cone excursion W length n, steps a = (1,0), b = (0,1), c = (-1,-1)

• Properties of the percolation clusters of (M, P) nicely encoded by W.

Loop areas, loop lengths, and pivotal measure: discrete

Loop areas, loop lengths, and pivotal measure: discrete

- Let $\mathfrak{a}(C)$ denote the **area** of the cluster C.
- Let $\mathfrak{l}(C)$ denote the **boundary length** of the cluster *C*.
- Let C_1, \ldots, C_k denote the k clusters with longest boundary.

Loop areas, loop lengths, and pivotal measure: discrete

- Let $\mathfrak{a}(C)$ denote the **area** of the cluster C.
- Let l(C) denote the **boundary length** of the cluster C.
- Let C_1, \ldots, C_k denote the k clusters with longest boundary.
- **Pivotal point**: vertex with the property that changing its color makes clusters merge or split
- Let $\mathfrak{p}_1(C)$ and $\mathfrak{p}_2(C)$ denote counting measure on the pivotal points.
- Let p₃(C, C') and p₄(C, C') denote counting measure on the pivotal points between C and C'.

• Consider a $\sqrt{8/3}\text{-}\text{LQG}$ surface, and decorate it with an independent CLE_6 $\Gamma.$

- Consider a $\sqrt{8/3}\text{-LQG}$ surface, and decorate it with an independent CLE_6 $\Gamma.$
- Let a(L) denote the **LQG** area enclosed by the CLE loop L.

- Consider a $\sqrt{8/3}\text{-LQG}$ surface, and decorate it with an independent CLE_6 $\Gamma.$
- Let a(L) denote the **LQG** area enclosed by the CLE loop L.
- Let $\ell(L)$ denote the **LQG length** of the CLE loop *L*.

- Consider a $\sqrt{8/3}\text{-LQG}$ surface, and decorate it with an independent CLE_6 $\Gamma.$
- Let a(L) denote the **LQG** area enclosed by the CLE loop L.
- Let $\ell(L)$ denote the **LQG length** of the CLE loop *L*.
- Let $p_1(L)$ and $p_2(L)$ denote the **LQG pivotal measure** of L.
- Let $p_3(L, L')$ and $p_4(L, L')$ denote the LQG pivotal measure between L and L'.

Convergence of loops and pivotal measure

- C_1, \ldots, C_k are the k clusters of the triangulation with longest boundary.
- \mathfrak{a} , \mathfrak{l} , and \mathfrak{p}_m denote loop area, loop length, and pivotal measure, respectively.
- Similar continuum notation; L_1, \ldots, L_k denote the k longest loops.

Theorem 1 (Bernardi-H.-Sun'17)

Consider a percolation decorated triangulation (M, P) with disk topology. For any $k \in \mathbb{N}$ the following quantities

 $\mathfrak{a}(C_j), \ \mathfrak{l}(C_j), \ \mathfrak{p}_1(C_j), \ \mathfrak{p}_2(C_j), \ \mathfrak{p}_3(C_i, C_j), \ \mathfrak{p}_4(C_i, C_j), \quad i, j \in \{1, \ldots, k\}$

converge jointly in law to the associated continuum quantities

 $a(L_j), \ \ell(L_j), \ p_1(L_j), \ p_2(L_j), \ p_3(L_i, L_j), \ p_4(L_i, L_j), \ i, j \in \{1, \ldots, k\}.$
Proof idea

Recall that $(M, P) \Rightarrow (h, \Gamma)$ in the **peanosphere topology**:

Proof idea

Recall that $(M, P) \Rightarrow (h, \Gamma)$ in the **peanosphere topology**:

Outline

- Background: discrete and continuum random surfaces
- Part I: Convergence in law of percolation-decorated RPM
- Part II: Conformal embedding of RPM

Conformal embedding of planar maps: our goal

We want a map $\phi: V(M) \to \mathbb{S}^2$ such that

 $\widehat{\mu}_{\phi} \Rightarrow \mu,$

where $\hat{\mu}_{\phi}$ is the measure on \mathbb{S}^2 induced by renormalized counting measure of V(M), and μ is $\sqrt{8/3}$ -LQG area measure.

random planar map (RPM) M

embedded RPM

Conformal embedding of planar maps: our goal

We want a map $\phi: V(M) \to \mathbb{T}$ such that

 $\widehat{\mu}_{\phi} \Rightarrow \mu,$

where $\hat{\mu}_{\phi}$ is the measure on \mathbb{T} induced by renormalized counting measure of V(M), and μ is $\sqrt{8/3}$ -LQG area measure.

Conformal embedding of planar maps: our goal

• Idea of Cardy embedding: Use properties of **percolation** on the RPM *M* to determine $\phi : V(M) \to \mathbb{T}$.

- Idea of Cardy embedding: Use properties of **percolation** on the RPM *M* to determine $\phi : V(M) \to \mathbb{T}$.
- There is a bijection between $x \in \mathbb{T}$ and triples (p_1, p_2, p_3) of the standard 2-simplex, which is defined in terms of CLE₆ crossing events (Smirnov'01).

- Idea of Cardy embedding: Use properties of percolation on the RPM M to determine φ : V(M) → T.
- There is a bijection between $x \in \mathbb{T}$ and triples (p_1, p_2, p_3) of the standard 2-simplex, which is defined in terms of CLE_6 crossing events (Smirnov'01).
- Given v ∈ V(M) we can obtain an triple (p̂₁, p̂₂, p̂₃) by considering percolation crossing probabilities on M.

- Idea of Cardy embedding: Use properties of percolation on the RPM *M* to determine φ : V(M) → T.
- There is a bijection between $x \in \mathbb{T}$ and triples (p_1, p_2, p_3) of the standard 2-simplex, which is defined in terms of CLE_6 crossing events (Smirnov'01).
- Given v ∈ V(M) we can obtain an triple (p
 ₁, p
 ₂, p
 ₃) by considering percolation crossing probabilities on M.
- Let $\phi(v)$ be the point $x \in \mathbb{T}$ associated with the triple $(\hat{p}_1, \hat{p}_2, \hat{p}_3)$ of v.

• We know that $(M, P) \Rightarrow (h, \Gamma)$ in the peanosphere topology.

C

• We know that $(M, P) \Rightarrow (h, \Gamma)$ in the peanosphere topology.

C

- We know that $(M, P) \Rightarrow (h, \Gamma)$ in the peanosphere topology.
- What is the limit of (M, P, \tilde{P}) for P and \tilde{P} independent?

- We know that $(M, P) \Rightarrow (h, \Gamma)$ in the peanosphere topology.
- What is the limit of (M, P, \tilde{P}) for P and \tilde{P} independent?
- We know that subsequentially, $((M, P), (M, \widetilde{P})) \Rightarrow ((h, \Gamma), (\widetilde{h}, \widetilde{\Gamma}))$.

- We know that $(M, P) \Rightarrow (h, \Gamma)$ in the peanosphere topology.
- What is the limit of (M, P, \tilde{P}) for P and \tilde{P} independent?
- We know that subsequentially, $((M, P), (M, \widetilde{P})) \Rightarrow ((h, \Gamma), (\widetilde{h}, \widetilde{\Gamma}))$.
- We believe that
 - (a) $h = \tilde{h}$ (b) Γ and $\tilde{\Gamma}$ are independent

• In other words, we believe that $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ independent.

- We know that $(M, P) \Rightarrow (h, \Gamma)$ in the peanosphere topology.
- What is the limit of (M, P, \tilde{P}) for P and \tilde{P} independent?
- We know that subsequentially, $((M, P), (M, \widetilde{P})) \Rightarrow ((h, \Gamma), (\widetilde{h}, \widetilde{\Gamma}))$.
- We believe that
 - (a) $h = \tilde{h}$
 - (b) Γ and $\widetilde{\Gamma}$ are independent
- In other words, we believe that $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ independent.
- Some variant of (a) and (b) imply:

- We know that $(M, P) \Rightarrow (h, \Gamma)$ in the peanosphere topology.
- What is the limit of (M, P, \tilde{P}) for P and \tilde{P} independent?
- We know that subsequentially, $((M, P), (M, \widetilde{P})) \Rightarrow ((h, \Gamma), (\widetilde{h}, \widetilde{\Gamma}))$.
- We believe that
 - (a) $h = \tilde{h}$ (b) Γ and $\tilde{\Gamma}$ are independent
- In other words, we believe that $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ independent.
- Some variant of (a) and (b) imply:

Theorem 2 (Gwynne-H.-Miller-Sheffield-Sun'17; assuming (a) & (b))

For a Cardy embedded map with percolation, $(\widehat{\mu}_{\phi}, \widehat{d}_{\phi}, \widehat{\Gamma}_{\phi}) \Rightarrow (\mu, d, \Gamma)$.

• Subsequentially, $(M, (M, P), (M, \widetilde{P})) \Rightarrow (h', (h, \Gamma), (\widetilde{h}, \widetilde{\Gamma}))$, where

- $h', h, \tilde{h} LQG and \Gamma, \tilde{\Gamma} CLE_6$
- 1st coordinate: metric topology
- 2nd and 3rd coordinates: peanosphere topology

- Subsequentially, $(M, (M, P), (M, \widetilde{P})) \Rightarrow (h', (h, \Gamma), (\widetilde{h}, \widetilde{\Gamma}))$, where
 - h', h, \tilde{h} LQG and $\Gamma, \tilde{\Gamma}$ CLE₆
 - 1st coordinate: metric topology
 - 2nd and 3rd coordinates: peanosphere topology
- Joint convergence in metric and peanosphere topology:

 $(M, (M, P)) \Rightarrow (h, (h, \Gamma)) \qquad (M, (M, \widetilde{P})) \Rightarrow (\widetilde{h}, (\widetilde{h}, \widetilde{\Gamma})).$

Gwynne-Miller proved joint metric and peanosphere convergence for a map with a **single** percolation interface. We iterate this result.

- Subsequentially, $(M, (M, P), (M, \widetilde{P})) \Rightarrow (h', (h, \Gamma), (\widetilde{h}, \widetilde{\Gamma}))$, where
 - $h', h, \tilde{h} LQG and \Gamma, \tilde{\Gamma} CLE_6$
 - 1st coordinate: metric topology
 - 2nd and 3rd coordinates: peanosphere topology
- Joint convergence in metric and peanosphere topology:

$$(M, (M, P)) \Rightarrow (h, (h, \Gamma)) \qquad (M, (M, \widetilde{P})) \Rightarrow (\widetilde{h}, (\widetilde{h}, \widetilde{\Gamma})).$$

Gwynne-Miller proved joint metric and peanosphere convergence for a map with a **single** percolation interface. We iterate this result.

• Combining the above, subsequentially

$$(M, (M, P), (M, \widetilde{P})) \Rightarrow (h, (h, \Gamma), (h, \widetilde{\Gamma})).$$

- Subsequentially, $(M, (M, P), (M, \widetilde{P})) \Rightarrow (h', (h, \Gamma), (\widetilde{h}, \widetilde{\Gamma}))$, where
 - $h', h, \tilde{h} LQG and \Gamma, \tilde{\Gamma} CLE_6$
 - 1st coordinate: metric topology
 - 2nd and 3rd coordinates: peanosphere topology
- Joint convergence in metric and peanosphere topology:

$$(M, (M, P)) \Rightarrow (h, (h, \Gamma)) \qquad (M, (M, \widetilde{P})) \Rightarrow (\widetilde{h}, (\widetilde{h}, \widetilde{\Gamma})).$$

Gwynne-Miller proved joint metric and peanosphere convergence for a map with a **single** percolation interface. We iterate this result.

• Combining the above, subsequentially

$$(M, (M, P), (M, \widetilde{P})) \Rightarrow (h, (h, \Gamma), (h, \widetilde{\Gamma})).$$

• In particular, $h = \tilde{h}$, so (a) is established.

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and $\widetilde{\Gamma}.$

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and $\widetilde{\Gamma}$.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and $\widetilde{\Gamma}$.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and $\widetilde{\Gamma}$.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and $\widetilde{\Gamma}$.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and $\widetilde{\Gamma}$.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.
- $\bullet\,$ Independence of Γ and $\widetilde{\Gamma}$ can be reduced to proving the following
 - (1) $(M, (P_t)_{t\geq 0}) \Rightarrow (h, (\Gamma_t)_{t\geq 0})$, for $(\Gamma_t)_{t\geq 0}$ continuum quantum DP (QDP). (2) $(\Gamma_t)_{t\geq 0}$ is mixing, i.e., Γ_t is asymptotically independent of Γ_0 .

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and $\widetilde{\Gamma}$.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.
- $\bullet\,$ Independence of Γ and $\widetilde{\Gamma}$ can be reduced to proving the following
 - (1) $(M, (P_t)_{t\geq 0}) \Rightarrow (h, (\Gamma_t)_{t\geq 0})$, for $(\Gamma_t)_{t\geq 0}$ continuum quantum DP (QDP). (2) $(\Gamma_t)_{t\geq 0}$ is mixing, i.e., Γ_t is asymptotically independent of Γ_0 .

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and $\widetilde{\Gamma}$.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.
- $\bullet\,$ Independence of Γ and $\widetilde{\Gamma}$ can be reduced to proving the following
 - (1) $(M, (P_t)_{t\geq 0}) \Rightarrow (h, (\Gamma_t)_{t\geq 0})$, for $(\Gamma_t)_{t\geq 0}$ continuum quantum DP (QDP). (2) $(\Gamma_t)_{t\geq 0}$ is mixing, i.e., Γ_t is asymptotically independent of Γ_0 .

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and $\widetilde{\Gamma}$.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.
- $\bullet\,$ Independence of Γ and $\widetilde{\Gamma}$ can be reduced to proving the following
 - (1) $(M, (P_t)_{t\geq 0}) \Rightarrow (h, (\Gamma_t)_{t\geq 0})$, for $(\Gamma_t)_{t\geq 0}$ continuum quantum DP (QDP). (2) $(\Gamma_t)_{t\geq 0}$ is mixing, i.e., Γ_t is asymptotically independent of Γ_0 .

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and $\widetilde{\Gamma}$.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.
- $\bullet\,$ Independence of Γ and $\widetilde{\Gamma}$ can be reduced to proving the following
 - (1) $(M, (P_t)_{t\geq 0}) \Rightarrow (h, (\Gamma_t)_{t\geq 0})$, for $(\Gamma_t)_{t\geq 0}$ continuum quantum DP (QDP). (2) $(\Gamma_t)_{t\geq 0}$ is mixing, i.e., Γ_t is asymptotically independent of Γ_0 .

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and $\widetilde{\Gamma}$.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.
- $\bullet\,$ Independence of Γ and $\widetilde{\Gamma}$ can be reduced to proving the following
 - (1) $(M, (P_t)_{t\geq 0}) \Rightarrow (h, (\Gamma_t)_{t\geq 0})$, for $(\Gamma_t)_{t\geq 0}$ continuum quantum DP (QDP). (2) $(\Gamma_t)_{t\geq 0}$ is mixing, i.e., Γ_t is asymptotically independent of Γ_0 .

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and $\widetilde{\Gamma}$.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.
- $\bullet\,$ Independence of Γ and $\widetilde{\Gamma}$ can be reduced to proving the following
 - (1) $(M, (P_t)_{t\geq 0}) \Rightarrow (h, (\Gamma_t)_{t\geq 0})$, for $(\Gamma_t)_{t\geq 0}$ continuum quantum DP (QDP). (2) $(\Gamma_t)_{t\geq 0}$ is mixing, i.e., Γ_t is asymptotically independent of Γ_0 .

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and Γ.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.
- $\bullet\,$ Independence of Γ and $\widetilde{\Gamma}$ can be reduced to proving the following
 - (1) $(M, (P_t)_{t\geq 0}) \Rightarrow (h, (\Gamma_t)_{t\geq 0})$, for $(\Gamma_t)_{t\geq 0}$ continuum quantum DP (QDP). (2) $(\Gamma_t)_{t\geq 0}$ is mixing, i.e., Γ_t is asymptotically independent of Γ_0 .

(2) mixing

$$(\mathcal{T}, (\mathscr{P}_t)_{t \ge 0}) \implies (h, (\Gamma_t))_{t \ge 0} \iff (M, (P_t)_{t \ge 0})$$

QDP on lattice
Continuum QDP
DP on RPM
Continuum QDP
Con

26 / 27

- Subsequentially, $(M, P, \widetilde{P}) \Rightarrow (h, \Gamma, \widetilde{\Gamma})$ for Γ and $\widetilde{\Gamma}$ not necessarily independent.
- We want to prove (b) independence of Γ and Γ.
- Dynamical percolation (DP) (P_t)_{t≥0} on M: Each vertex is associated with a Poisson clock with rate n^{-1/4} and its color is resampled every time its clock rings.
- $\bullet\,$ Independence of Γ and $\widetilde{\Gamma}$ can be reduced to proving the following
 - (1) $(M, (P_t)_{t\geq 0}) \Rightarrow (h, (\Gamma_t)_{t\geq 0})$, for $(\Gamma_t)_{t\geq 0}$ continuum quantum DP (QDP). (2) $(\Gamma_t)_{t\geq 0}$ is mixing, i.e., Γ_t is asymptotically independent of Γ_0 .

(2) mixing

$$(\mathcal{T}, (\mathscr{P}_t)_{t \ge 0}) \implies (h, (\Gamma_t))_{t \ge 0} \iff (M, (P_t)_{t \ge 0})$$

QDP on lattice
Continuum QDP
DP on RPM
Continuum QDP
Con

26 / 27

Thanks!

	/ N A I T)
Holden	/ 1// 1 1 1
i loiden j	(

Uniform RPM and LQG

November 2, 2017 27 / 2

3

メロト メポト メヨト メヨト