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Random planar map

A random planar map (RPM) M is a graph drawn in the plane,
viewed up to continuous deformations.
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Random planar map

A random planar map (RPM) M is a graph drawn in the plane,
viewed up to continuous deformations.

A triangulation is a planar map where all the faces have three edges.

Given n,m ∈ N let M be a uniformly chosen triangulation with n
vertices and m boundary vertices.
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Liouville Quantum Gravity (LQG)

Let γ ∈ (0, 2).

Holden (MIT) Uniform RPM and LQG November 2, 2017 4 / 27



Liouville Quantum Gravity (LQG)

Let γ ∈ (0, 2).

If h : [0, 1]2 → R is smooth, then eγh(z)dx dy defines an area measure on [0, 1]2.

Holden (MIT) Uniform RPM and LQG November 2, 2017 4 / 27



Liouville Quantum Gravity (LQG)

Let γ ∈ (0, 2).

If h : [0, 1]2 → R is smooth, then eγh(z)dx dy defines an area measure on [0, 1]2.

LQG is the surface we get by letting h be the Gaussian free field (GFF).

Holden (MIT) Uniform RPM and LQG November 2, 2017 4 / 27
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Let γ ∈ (0, 2).

If h : [0, 1]2 → R is smooth, then eγh(z)dx dy defines an area measure on [0, 1]2.

LQG is the surface we get by letting h be the Gaussian free field (GFF).

The GFF is a random distribution describing a natural perturbation of a harmonic
function.

The definition of LQG does not make literal sense, since h is not a function.

discrete GFF, by J. Miller.
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Liouville Quantum Gravity (LQG)

Let γ ∈ (0, 2).

If h : [0, 1]2 → R is smooth, then eγh(z)dx dy defines an area measure on [0, 1]2.

LQG is the surface we get by letting h be the Gaussian free field (GFF).

The GFF is a random distribution describing a natural perturbation of a harmonic
function.

The definition of LQG does not make literal sense, since h is not a function.

The area measure can be defined rigorously by regularizing.

The area measure is non-atomic and has full support, but is singular with respect
to Lebesgue measure.

discrete GFF, by J. Miller.
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Illustration of LQG area measure

LQG defines a random area measure eγh dx dy in the square.
.

Fix δ > 0. Divide squares of LQG area above δ.
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Illustration of LQG area measure

Area measure of random surface eγhdx dy , γ = 1.5, by J. Miller
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Illustration of LQG area measure

γ = 1 γ = 1.5 γ = 1.75

Area measure of random surface eγhdx dy , by J. Miller
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Convergence of RPM to LQG

LQG is the conjectured or proven scaling limit of a RPM.
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Conjectural relationship between RPM and LQG used by physicists to
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Convergence of RPM to LQG

LQG is the conjectured or proven scaling limit of a RPM.

Conjectural relationship between RPM and LQG used by physicists to
calculate exponents associated with statistical mechanics models.

Topologies for convergence of RPM:

Metric space structure (Gromov-Hausdorff topology)

Le Gall’13, Miermont’13, and others

Conformal structure (weak topology for measures on C)

Statistical physics decorations (peanosphere topology)

Duplantier-Miller-Sheffield’14 and others
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Convergence of RPM to LQG

LQG is the conjectured or proven scaling limit of a RPM.

Conjectural relationship between RPM and LQG used by physicists to
calculate exponents associated with statistical mechanics models.

Topologies for convergence of RPM:

Metric space structure (Gromov-Hausdorff topology)

Le Gall’13, Miermont’13, and others

Conformal structure (weak topology for measures on C) Part 2 of talk

Statistical physics decorations (peanosphere topology) Part 1 of talk

Duplantier-Miller-Sheffield’14 and others
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Conjecture: Conformally embedded RPM ⇒ LQG

Let M be a uniformly chosen RPM, and let φ : V (M)→ S2 be a discrete
conformal map.

φ

RPM M embedded RPM

Figure by Nicolas Curien.
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Let M be a uniformly chosen RPM, and let φ : V (M)→ S2 be a discrete
conformal map.

We get an area measure µ̂φ on S2 by considering (renormalized) counting measure
induced by V (M).
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Conjecture: Conformally embedded RPM ⇒ LQG

Let M be a uniformly chosen RPM, and let φ : V (M)→ S2 be a discrete
conformal map.

We get an area measure µ̂φ on S2 by considering (renormalized) counting measure
induced by V (M).

µ̂φ is conjectured to converge in law to
√

8/3-LQG area measure µ.

φ

RPM M embedded RPM

Figure by Nicolas Curien.
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Discrete conformal embeddings

Circle packing

Riemann uniformization

Tutte embedding (harmonic)

Cardy embedding

circle packing (sphere topology) circle packing (disk topology)
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Discrete conformal embeddings

Circle packing

Riemann uniformization

Tutte embedding (harmonic)

Cardy embedding

Random planar map Riemannian manifold
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Discrete conformal embeddings

Circle packing

Riemann uniformization

Tutte embedding (harmonic)

Cardy embedding

.
Uniformization theorem: For any simply connected Riemann surface M
there is a conformal map φ from M to either D, C or S2.

φ
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Discrete and continuum decorated surfaces

We decorate the surfaces with percolation and CLE6, respectively:

(M,P )
(h, Γ)

percolation P on RPM M CLE6 Γ on
√

8/3-LQG h
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Percolation on RPM

(M,P )

Consider a uniform triangulation M of the disk.

Critical percolation probability psitec = 1/2 (Angel’03).

We get a percolation P by coloring the inner vertices uniformly and
independently blue or yellow, and coloring the boundary vertices blue.
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The conformal loop ensemble CLE6

The conformal loop ensemble CLE6 Γ is a countable collection of non-crossing
loops in some simply connected subset of C.
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The conformal loop ensemble CLE6 Γ is a countable collection of non-crossing
loops in some simply connected subset of C.

CLE6 describes the scaling limit of the cluster interfaces for critical percolation on
the triangular lattice, and is conformally invariant.
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The conformal loop ensemble CLE6

The conformal loop ensemble CLE6 Γ is a countable collection of non-crossing
loops in some simply connected subset of C.

CLE6 describes the scaling limit of the cluster interfaces for critical percolation on
the triangular lattice, and is conformally invariant.

An instance of CLE6 Γ is equivalent to the following two objects ω and η:

ω encodes information about quad crossings

B A

C D

Q

B
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A
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The conformal loop ensemble CLE6

The conformal loop ensemble CLE6 Γ is a countable collection of non-crossing
loops in some simply connected subset of C.

CLE6 describes the scaling limit of the cluster interfaces for critical percolation on
the triangular lattice, and is conformally invariant.

An instance of CLE6 Γ is equivalent to the following two objects ω and η:

ω encodes information about quad crossings
η is a space-filling Schramm-Loewner evolution SLE6

B A

C D

Q

B

C D

A

Q
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Conjectured relation between decorated RPM and LQG

Physics conjectures:

(a) M ⇒ h as embedded surfaces

.

.

| ⇒

embedded RPM M
√

8/3-LQG h
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Conjectured relation between decorated RPM and LQG

Physics conjectures:

(a) M ⇒ h as embedded surfaces

(b) (M,P)⇒ (h, Γ) as embedded decorated surfaces

.

| ⇒

embedded (M,P)
√

8/3-LQG h and CLE6 Γ

Holden (MIT) Uniform RPM and LQG November 2, 2017 14 / 27



Conjectured relation between decorated RPM and LQG

Physics conjectures:
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(c) More generally: other decorations give γ-LQG and CLEκ
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Peanosphere convergence

(M,P )

(h,Γ)

| ⇔

| ⇔

walk (Wk)k∈[n]

Brownian excursion
(Zt)t∈[0,1]

⇓

bijection

measurability

Iconvergence

map+percolation

LQG+CLE

W
Z

| ⇒
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Peanosphere convergence

(M,P )

(h,Γ)

| ⇔

| ⇔

walk (Wk)k∈[n]

Brownian excursion
(Zt)t∈[0,1]

⇓

bijection

measurability

Iconvergence

map+percolation

LQG+CLE

.
The result that W ⇒ Z (after rescaling) means the following.

Proposition 1

(M,P) converges to (h, Γ) in the peanosphere topology as introduced by
Duplantier-Miller-Sheffield’14.
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Peanosphere encoding of discrete surface

Bernardi’07, Bernardi-H.-Sun’17: Bijection between

(1) site-percolated rooted triangulation (M,P) of disk with n + 1 edges.

(2) cone excursion W length n, steps a = (1, 0), b = (0, 1), c = (−1,−1)

a

b

babcbbabccacc

2

1 ⇔
W

(M,P )

Properties of the percolation clusters of (M,P) nicely encoded by W .
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Peanosphere encoding of discrete surface

Bernardi’07, Bernardi-H.-Sun’17: Bijection between

(1) site-percolated rooted triangulation (M,P) of disk with n + 1 edges.

(2) cone excursion W length n, steps a = (1, 0), b = (0, 1), c = (−1,−1)
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Loop areas, loop lengths, and pivotal measure: discrete

(M,P )
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Loop areas, loop lengths, and pivotal measure: discrete

Let a(C ) denote the area of the cluster C .

Let l(C ) denote the boundary length of the cluster C .

Let C1, . . . ,Ck denote the k clusters with longest boundary.

l(C)a(C)C
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Loop areas, loop lengths, and pivotal measure: discrete

Let a(C ) denote the area of the cluster C .

Let l(C ) denote the boundary length of the cluster C .

Let C1, . . . ,Ck denote the k clusters with longest boundary.

Pivotal point: vertex with the property that changing its color makes
clusters merge or split

Let p1(C ) and p2(C ) denote counting measure on the pivotal points.

Let p3(C ,C ′) and p4(C ,C ′) denote counting measure on the pivotal
points between C and C ′.

C
C

C

C ′

(1) p1(C) (2) p2(C) (3) p3(C,C
′) (4) p4(C,C

′)

C
C ′
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Loop areas, loop lengths, and pivotal measure: continuum

Consider a
√

8/3-LQG surface, and decorate it with an independent
CLE6 Γ.
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8/3-LQG surface, and decorate it with an independent
CLE6 Γ.

Let a(L) denote the LQG area enclosed by the CLE loop L.

L
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Loop areas, loop lengths, and pivotal measure: continuum

Consider a
√

8/3-LQG surface, and decorate it with an independent
CLE6 Γ.

Let a(L) denote the LQG area enclosed by the CLE loop L.

Let `(L) denote the LQG length of the CLE loop L.

L
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Loop areas, loop lengths, and pivotal measure: continuum

Consider a
√

8/3-LQG surface, and decorate it with an independent
CLE6 Γ.

Let a(L) denote the LQG area enclosed by the CLE loop L.

Let `(L) denote the LQG length of the CLE loop L.

Let p1(L) and p2(L) denote the LQG pivotal measure of L.

Let p3(L, L′) and p4(L, L′) denote the LQG pivotal measure between
L and L′.

(1) p1(L) (2) p2(L) (3) p3(L,L
′) (4) p4(L,L

′)
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Convergence of loops and pivotal measure

C1, . . . ,Ck are the k clusters of the triangulation with longest boundary.

a, l, and pm denote loop area, loop length, and pivotal measure, respectively.

Similar continuum notation; L1, . . . , Lk denote the k longest loops.

Theorem 1 (Bernardi-H.-Sun’17)

Consider a percolation decorated triangulation (M,P) with disk topology. For any k ∈ N
the following quantities

a(Cj), l(Cj), p1(Cj), p2(Cj), p3(Ci ,Cj), p4(Ci ,Cj), i , j ∈ {1, . . . , k}

converge jointly in law to the associated continuum quantities

a(Lj), `(Lj), p1(Lj), p2(Lj), p3(Li , Lj), p4(Li , Lj), i , j ∈ {1, . . . , k}.
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Proof idea

Recall that (M,P)⇒ (h, Γ) in the peanosphere topology:

(M,P )

(h,Γ)

| ⇔

| ⇔

walk (Wk)k∈[n]

Brownian excursion
(Zt)t∈[0,1]

⇓

bijection

measurability

Iconvergence

map+percolation

LQG+CLE
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Outline

Background: discrete and continuum random surfaces

Part I: Convergence in law of percolation-decorated RPM

Part II: Conformal embedding of RPM

Holden (MIT) Uniform RPM and LQG November 2, 2017 20 / 27



Conformal embedding of planar maps: our goal

We want a map φ : V (M)→ S2 such that

µ̂φ ⇒ µ,

where µ̂φ is the measure on S2 induced by renormalized counting measure of V (M), and
µ is

√
8/3-LQG area measure.

φ

random planar map (RPM) M embedded RPM
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We want a map φ : V (M)→ T such that

µ̂φ ⇒ µ,

where µ̂φ is the measure on T induced by renormalized counting measure of V (M), and
µ is

√
8/3-LQG area measure.

A

B C

φ

a

b

c

T

random planar map (RPM) M embedded RPM
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Conformal embedding of planar maps: our goal

.

.

RPM

Brownian map
√

8/3-LQG
Miller-Sheffield

LeGall
Miermont

conformal
metric

measure

...
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Cardy embedding

Idea of Cardy embedding: Use properties of percolation on the RPM M to
determine φ : V (M)→ T.

p1(x) = P

A

B C

x
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Idea of Cardy embedding: Use properties of percolation on the RPM M to
determine φ : V (M)→ T.

There is a bijection between x ∈ T and triples (p1, p2, p3) of the standard
2-simplex, which is defined in terms of CLE6 crossing events (Smirnov’01).

Given v ∈ V (M) we can obtain an triple (p̂1, p̂2, p̂3) by considering percolation
crossing probabilities on M.

Let φ(v) be the point x ∈ T associated with the triple (p̂1, p̂2, p̂3) of v .

p1(x) = P

A

B C

x
v

a

b

c
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Convergence of the Cardy embedding

We know that (M,P)⇒ (h, Γ) in the peanosphere topology.

a

b

c

a

b

c

(M,P ) (M, P̃ )
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Convergence of the Cardy embedding

We know that (M,P)⇒ (h, Γ) in the peanosphere topology.

What is the limit of (M,P, P̃) for P and P̃ independent?

a

b

c

a

b

c

(M,P ) (M, P̃ )
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We know that subsequentially,
(
(M,P), (M, P̃)

)
⇒
(
(h, Γ), (h̃, Γ̃)

)
.

We believe that

(a) h = h̃

(b) Γ and Γ̃ are independent

In other words, we believe that (M,P, P̃)⇒ (h, Γ, Γ̃) for Γ and Γ̃ independent.

a

b

c

a

b

c

(M,P ) (M, P̃ )

Holden (MIT) Uniform RPM and LQG November 2, 2017 24 / 27



Convergence of the Cardy embedding

We know that (M,P)⇒ (h, Γ) in the peanosphere topology.
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We know that subsequentially,
(
(M,P), (M, P̃)

)
⇒
(
(h, Γ), (h̃, Γ̃)

)
.

We believe that

(a) h = h̃

(b) Γ and Γ̃ are independent

In other words, we believe that (M,P, P̃)⇒ (h, Γ, Γ̃) for Γ and Γ̃ independent.

Some variant of (a) and (b) imply:

a

b c

v

measure µ̂φ

metric d̂φ
loops Γ̂φ

⇒

measure µ
metric d
CLE6 loops Γ

Cardy embedded map (schematic drawing)
√

8/3-LQG/Brownian disk
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Convergence of the Cardy embedding

We know that (M,P)⇒ (h, Γ) in the peanosphere topology.

What is the limit of (M,P, P̃) for P and P̃ independent?

We know that subsequentially,
(
(M,P), (M, P̃)

)
⇒
(
(h, Γ), (h̃, Γ̃)

)
.

We believe that

(a) h = h̃

(b) Γ and Γ̃ are independent

In other words, we believe that (M,P, P̃)⇒ (h, Γ, Γ̃) for Γ and Γ̃ independent.

Some variant of (a) and (b) imply:

Theorem 2 (Gwynne-H.-Miller-Sheffield-Sun’17; assuming (a) & (b))

For a Cardy embedded map with percolation, (µ̂φ, d̂φ, Γ̂φ)⇒ (µ, d , Γ).
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Joint convergence in metric and peanosphere topology

Subsequentially,
(
M, (M,P), (M, P̃)

)
⇒
(
h′, (h, Γ), (h̃, Γ̃)

)
, where

h′, h, h̃ LQG and Γ, Γ̃ CLE6

1st coordinate: metric topology
2nd and 3rd coordinates: peanosphere topology

Holden (MIT) Uniform RPM and LQG November 2, 2017 25 / 27



Joint convergence in metric and peanosphere topology

Subsequentially,
(
M, (M,P), (M, P̃)

)
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(
h′, (h, Γ), (h̃, Γ̃)

)
, where

h′, h, h̃ LQG and Γ, Γ̃ CLE6

1st coordinate: metric topology
2nd and 3rd coordinates: peanosphere topology

Joint convergence in metric and peanosphere topology:
(
M, (M,P)

)
⇒
(
h, (h, Γ)

) (
M, (M, P̃)

)
⇒
(
h̃, (h̃, Γ̃)

)
.

Gwynne-Miller proved joint metric and peanosphere convergence for a
map with a single percolation interface. We iterate this result.

One percolation interface All percolation interfaces
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(
h̃, (h̃, Γ̃)

)
.

Gwynne-Miller proved joint metric and peanosphere convergence for a
map with a single percolation interface. We iterate this result.

Combining the above, subsequentially

(
M, (M,P), (M, P̃)

)
⇒
(
h, (h, Γ), (h, Γ̃)

)
.
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(
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)
, where

h′, h, h̃ LQG and Γ, Γ̃ CLE6

1st coordinate: metric topology
2nd and 3rd coordinates: peanosphere topology

Joint convergence in metric and peanosphere topology:

(
M, (M,P)

)
⇒
(
h, (h, Γ)

) (
M, (M, P̃)

)
⇒
(
h̃, (h̃, Γ̃)

)
.

Gwynne-Miller proved joint metric and peanosphere convergence for a
map with a single percolation interface. We iterate this result.

Combining the above, subsequentially

(
M, (M,P), (M, P̃)

)
⇒
(
h, (h, Γ), (h, Γ̃)

)
.

In particular, h = h̃, so (a) is established.
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Independent percolations give independent CLEs

Subsequentially, (M,P, P̃)⇒ (h, Γ, Γ̃) for Γ and Γ̃ not necessarily independent.

We want to prove (b) independence of Γ and Γ̃.
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We want to prove (b) independence of Γ and Γ̃.

Dynamical percolation (DP) (Pt)t≥0 on M: Each vertex is associated with a
Poisson clock with rate n−1/4 and its color is resampled every time its clock rings.
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Poisson clock with rate n−1/4 and its color is resampled every time its clock rings.

Independence of Γ and Γ̃ can be reduced to proving the following
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(2) (Γt)t≥0 is mixing, i.e., Γt is asymptotically independent of Γ0.
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QDP on lattice DP on RPM
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.

Thanks!
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