MAT 542 Complex Analysis I

Problem Set 7

due Tuesday, March 27

Problem 1. (i) Let *a* be real, $0 \le a < 1$. Let U_a be the open set obtained from the unit disk $\{|z| < 1\}$ by removing the segment [a, 1] of the real line. Construct a conformal isomorphism between U_0 and U_a for a > 0.

(ii) Construct a conformal isomorphism between U_0 and the unit disk $\{|z| < 1\}$.

Problem 2. Let $f: D \to D$ be a holomorphic map of the unit disk $D = \{|z| < 1\}$ into itself. Show that for all $a \in D$

$$\frac{|f'(a)|}{1-|f(a)|^2} \le \frac{1}{1-|a|^2}$$

Hint: Let g be an automorphism of D that maps 0 to a, and h an automorphism that maps f(a) to 0. Apply the Schwarz lemma to $F = h \circ f \circ g$.

Problem 3. (Blaschke products) A function of the form

$$B(z) = \lambda \left(\frac{z - z_1}{1 - \overline{z_1}z}\right) \cdots \left(\frac{z - z_n}{1 - \overline{z_n}z}\right),$$

where $|\lambda| = 1$ and $|z_j| < 1$ for all $1 \le j \le n$, is called a *finite Blaschke product*.

Check that B(z) is holomorphic in the closed unit disk $\{|z| \leq 1\}$, maps this disk into itself and has zeroes at z_1, \ldots, z_n .

Suppose that f is holomorphic in the closed unit disk $\{|z| \leq 1\}$ and maps this disk into itself. Suppose also that |f(z)| = 1 whenever |z| = 1. Show that f must be a finite Blaschke product.

Problem 4. Let $f: D \to D$ be a holomorphic map of the unit disk $D = \{|z| < 1\}$ into itself such that f(0) = f(1/2) = f(-1/2) = 0. Show that

$$\left| f\left(\frac{1}{4}\right) \right| \le \frac{1}{21}.$$

Show that the upper bound 1/21 cannot be improved. **Hint:** Use Blaschke products.

Note: I saw problems like this very often on various comprehensive/qualifying exams.

Problem 5. Prove that the sum of the series

$$g(z) = \sum_{k=1}^{\infty} \frac{(-1)^k}{z+k}$$

defines a meromorphic function in \mathbb{C} , and identify its poles.

Can a formula for g'(z) be obtained by differentiating the series term-by-term? (give proof either way).

Problem 6. Let U be an open set. Suppose the functions f_n are holomorphic in U and converge to f uniformly on any compact subset of U; assume that f is not identically zero. (i) Let $S = \{z \in U : f_n(z) = 0 \text{ for some } n\}$, i.e S is the set of all zeroes of all functions f_n . Show that the zeroes of f in U are identical with the accumulation points of S. More precisely, prove that a is a zero of f if and only if every neighborhood of a contains zeroes of f_n for arbitrarily large n.

(ii) Suppose that $U = \mathbb{C}$, so all f_n 's are entire functions. Suppose that the functions f_n have only real zeroes. Is it true that f has only real zeroes?

(iii) Suppose U contains the segment [a, b] of the real axis, the functions f_n all assume the real values for real z and have no zeroes on [a, b]. Is it true that f has no zeroes on [a, b]?