
MAT 540, Homework 8, due Thursday, Oct 24

0. (do not submit but make sure you understand this)
The two subspaces of R2 shown below are homotopy equivalent, as can be seen, for example, by repre-
senting them as a deformation retract of a third space. You can also show that each of them is homotopy
equivalent to the wedge sum of two circles. Explain how to construct explicit homotopy equivalences
between these spaces (and why they are homotopy inverses of one another). Arguing by picture is fine
but you need to understand what the maps and the homotopies do.

1. The goal of this question is to develop more intuition about homotopy equivalence.
Each of the topological spaces below is homotopy equivalent to a (finite) wedge sum of some spheres,
possibly of different dimensions. (Some of the spaces may be homotopy equivalent to a single sphere or
a circle, or be contractible.) Recall that for any collection of spaces (Xα, xα) with chosen basepoints, the
wedge sum ∨αXα is the quotient of the disjoint union tαXα obtained by identifying all xα ∈ Xα to a
single point.

Find the corresponding wedge sum in each case, and explain briefly what the homotopy equivalences look
like and what the required homotopies do. Arguing informally (“by picture”) is fine; no formulas are
required. Sometimes you will be able to find deformation retracts that are wedges of spheres.

(a) the complement T 2 \ {p} of a point p in a torus T 2;

(b) the complement of k lines through the origin in Rn;

(c) the union S2∪D of the sphere S2 = {x2+y2+z2 = 1} ⊂ R3 and the disk D = {x2+y2 ≤ 1, z = 1}.
(d) the union S2 ∪ I of the sphere S2 in R3 and a segment I connecting two opposite points of S2;

(e) the sphere Sn, n ≥ 2, with k distinct points identified, that is, the quotient Sn/K for K =
{x1, x2, . . . xk} ⊂ Sn.

Note: Different wedge sums of spheres are not homotopy equivalent (although we cannot prove it yet),
so the answer is unique in each case. In particular, keep in mind that higher-dimensional spheres are not
contractible, even if they are simply connected!

2. The Gram-Schmidt othogonalization process can be interpreted to give a deformation retraction of
one space of matrices onto another. Give a precise statement (what is a deformation retract of what?)
and prove it.

3. Show that a homotopy equivalence f : X → Y induces a bijection between the set of path components
of X and the set of path components of Y .

4. The cone CX over a topological space X is defined as X × I/(X × {0}), where I = [0, 1]. The point
of CX obtained by collapsing X × {0} is called the vertex of the cone; X × {1} is called the base of the
cone. (The base can be identified with X.)

(a) What is CSn?

(b) Prove that the base of a cone CX is a retract of CX if and only if X is contractible.

5. (a) Let F : Rm → Rn be a smooth map such that F (0) = 0. Define

H(x, t) =

{
1
tF (tx), 0 < t ≤ 1

D0F (x), t = 0.

Show that H is a smooth homotopy between F and the linear map D0F .
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(b) Let Br(0) ⊂ BR(0) be the balls of radius r resp. R centered at 0, R > r > 0. Using bump functions
or partition of unity, construct a smooth homotopy H(x, t) giving the map F (x) at time t = 1 and such
such that:

(i) H(x, t) = F (x) for all 0 ≤ t ≤ 1, x ∈ Rm \BR(0);
(ii) H(x, 0) = D0F (x), x ∈ Br(0).

This homotopy makes the given map linear in a small neighborhood of 0, while keeping F fixed outside
of a larger given neighborhood.

(c) Suppose that m = n and D0F is non-singular. Suppose that detD0F > 0. Using (a) and (b),
construct a (smooth) homotopy H(x, t) such that

(i) H(x, t) = F (x) for all 0 ≤ t ≤ 1, for all x outside of a given neighborhood of 0;
(ii) H(x, 0) = x for x in a small neighborhood of 0.

State and prove a similar result for the case detD0F < 0.

Note: working in a chart, you can use the result of this exercise to linearize a smooth map between
manifolds in a neighborhood of a given point by a homotopy. This is a very useful technical trick
(especially when D0F is non-singular).

6. This question is about spaces obtained as quotients by group actions. We had an intro discussion in
class (the summary of definitions is below). We considered the situation where the group G acts on a
smooth manifold M by diffeomorphisms, and explained that the orbit space M/G is locally Euclidean and
has smooth charts if the action satisfies condition (*) below. (We explained the smooth structures but
skipped checking point-set topoogical properties.) Here, you are asked to check some of the topological
properties and work out a useful example.

LetX be a topological space, G a group acting onX. This means that we are given a homomorphism of the
group G into the group Homeo(X) of homeomorphisms of X: for every g ∈ G, there is a homeomorphism
φg : X → X such that φgh = φh ◦ φg, g, h ∈ G. We will usually write g for the homeomorphism φg to
simplify notation.

The orbit of x ∈ X is the set Ox = {g(x) : g ∈ G}. The space of orbits X/G is the quotient space of X
under the equivalence relation g(x) ∼ h(x), g, h ∈ G, with quotient topology. We will need the following
property to ensure that the orbit space is nice.

(*) Each x ∈ X has a neighborhood U such that all the images g(U) are disjoint, g ∈ G: if g(U)∩h(U) 6= ∅,
then g = h.

An action with property (*) is sometimes called properly discontinuous; the terminology differs in the
literature. A free action of G on X is an action where non-trivial elements do not have fixed points: if
g ∈ G and g(x) = x for some x ∈ X, then g = e. A group action satisfying (*) is always free.

(a) If X is Hausdorff and the action satisfies (*), show that each orbit Ox is closed.

(b) Assume that X is compact and Hausdorff. Show that if (*) is satisfied, then X/G is compact and
Hausdorff.

(c) Show that if G is a finite group acting freely on a Hausdorff space X, then the action satisfies (*). In
this case, X/G is also Hausdorff.

(d) Consider the group G of plane transformations, generated by the translation t : (x, y) 7→ (x, y+ 1) of
R2 together with the affine transformation a : (x, y) 7→ (x + 1

2 ,−y). Show that this action satisfies (*).

What do orbits of this action look like? Identify the quotient space R2/G as a familiar (orientable or
non-orientable) surface. Justify your answer.

Note: although (b) and (c) don’t cover examples such as (d), the Hausdorff property for the orbit space
X/G will hold if one adds another hypothesis to (*). That would cover the interesting examples that we
care about. I’ll post a reference once the homework is collected.


