
MAT 540, Homework 11, due Thursday, Nov 14

1. Let X be a (finite-dimensional) CW complex. Show that X is Hausdorff.

You will need to construct open neighborhoods inductively, working your way up the skeleta. Note that
if U is an open set in Xn−1, then U is typically not open in Xn but can be enlarged to an open set in Xn.

2. Given a (finite-dimensional) CW complex X with skeleta

Xk = Xk−1 ⊔
⊔
α

Dk
α /(ϕα(x) ∼ x, x ∈ ∂Dk

α), k = 1, 2, . . . ,

the characteristic map Φα : Dk
α → X of the given cell is the composition

Dk
α ↪→ Xk−1 ⊔

⊔
α

Dk
α → Xk ↪→ X,

where the first and third maps are the obvious inclusions, and the second is the quotient map.

(a) Show that the restriction Φα|IntDk
α
to the interior of the disk is a homeomorphism onto its image.

Common notation: ekα = Φα(IntD
k
α); we say that ekα is an open cell.

Show that ekα is open in Xk but that ekα may not be open in X if X has higher-dimensional cells.

We have a decomposition of X into a disjoint union of cells ekα of different dimensions, X = ∪k,αe
k
α.

(b) Show that Φα(D
k
α) is closed in X, and that this is the closure of the open cell ekα. [You will need to

use the Hausdorff property.] We say that Φα(D
k
α) = ēkα is a closed cell.

3. Describe CW decompositions and compute the fundamental group for the following spaces (arguing
from cell attachments).

(a) The quotient space X of S2 under the identifications x ∼ −x for x in the equator S1. (Note that X
is not the same as RP2: the opposite points outside the equator are not identified in pairs.)

(b) The CW complex Y obtained from S1 by attaching two 2-cells, via maps z 7→ z2 and z 7→ z3,
respectively. (Think of a 2-cell as unit disk D ⊂ C, so that ∂D = {|z| = 1}).
(c) The space Z obtained from two tori S1 × S1 by identifying a circle S1 × {x0} in one torus with the
corresponding circle S1 × {x0} in the other torus.

(d) The wedge RP2 ∨ T 2 of the projective plane and the torus.

(e) The complex projective space CPn.

For the CW structure on CPn, note that it’s not enough to say that CPk \ CPk−1 is homeomorphic to
an open disk for each k: you need to have attaching maps for the cells to give a CW structure. It’s not
too hard to do this yourself but feel free to read it in Hatcher Chapter 0 if you get stuck.

4. This question asks you to prove a part of the statement πn(S
n, x0) = Z, namely, the fact that every

map from Sn to Sn is homotopic to a multiple of the identity map 1 (and the homotopy can be chosen
to fix the basepoints). The strategy of the proof is in part (b).

(a) [Do not submit this part.] Make sure you understand the group operation in πn(S
n, x0), what the

multiples of 1 look like, what −1 looks like, and why 1+ (−1) = 0. We discussed this material in class
a few weeks ago, but please review as necessary.

(b) Given f : (Sn, x0) → (Sn, x0), homotop f to a smooth map g (rel x0), and pick a regular value y of g, so
that g−1(y) = {x1, . . . , xk}. Use the result of Question 5 Homework 8 to change g by a homotopy in small
neighborhoods of xi’s so that the map is the identity or the reflection (in the appropriate coordinates).
Then make another homotopy to expand these special neighborhoods and stretch each of their images to
the entire sphere to obtain a multiple of the identity map.

Note: The above argument shows that g is homotopic to m ·1, where m is the number of preimages of a
regular value of g, counted with sign. (The sign is given by the determinant of the Jacobian of the map
at each xi, after fixing the orientation of Sn: in other words, xi is counted with + or − depending on
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whether the local diffeomorphism g preserves or reverses the orientation at xi.) The number m is called
the degree of g. It can be shown that m is independent of the choice of the regular value, that in fact deg g
is a homotopy invariant. (See Milnor’s Topology from the Differentiable Viewpoint.) Once you have the
latter statement, it follows that maps of different degree cannot be homotopic, and you can conclude that
πn(S

n, x0) = Z. (The argument in part (b) shows that Z surjects onto π1(S
n, x0).) Homotopy invariance

of the degree can be established by expressing the degree via homology or cohomology (in MAT 531), or
by an argument given in Milnor’s book. [This note is for your information only.]

5. This question defines the winding number of a loop around a point and establishes its properties.

Suppose u : S1 → R2 is a continuous map, and x /∈ u(S1). Then u determines an element indx u ∈
π1(R2 − {x}) = Z, called the winding number of u with respect to x. [We fix the counterclockwise
direction on S1 which is the domain of u, and for each x ∈ R2, we will choose the homotopy class of the
couterclockwise standard loop going once around x as the generator 1 ∈ Z.]

(a) Show that if u(S1) is contained in a disk D and x /∈ D, then indx u = 0.

(b) Prove that the formula x 7→ indx u defines a locally constant function on R2 − u(S1). (It follows that
if u is a “nice” curve, possibly with some self-intersections, so that it divides R2 into some connected
components, then the winding number remains the same within each component.)

(c) Let u : S1 → R2, and suppose that x, y ∈ R2 − u(S1), such that indx u ̸= indy u. Show that any path
from x to y must intersect u(S1).

(d) Now assume that u : S1 → R2 is a smooth immersion, with a finite number of self-intersection
points, x /∈ u(S1) as before. Show that for almost all rays R in R2 starting at x, the ray R meets u(S1)
transversely at finitely many points that avoid the self-intersections. [Note that u(S1) is locally a smooth
submanifold in R2 away from the self-intersections. “Almost all rays” means the statement is true for all
angles of the ray except for a set of measure 0.]

(e) Suppose that the ray R starting from x as above meets u(S1) transversely at finitely many points
that avoid the self-intersections. Show that indx u equals to the signed count of intersections of R with
the curve u(S1), where an intersection point p is counted with a + if the curve traverses R in the
counterclockwise direction at p, and with − if the direction is clockwise. [More formally, you compare
the orientation given by the outward ray and the tangent vector to the oriented curve with the standard
orientation of R2.]

***

The van Kampen theorem, which we did not discuss in class, is another useful tool for computing the
fundamental group (although not always the best one). Please review that theorem if you are already
familiar, or attend MAT 530 for a couple of lectures if you are not. You should be able to compute all
the fundamental groups in Question 3 via van Kampen as well as via the cellular techniques.

Optional but recommended: Read sections 7.3 and 7.4 of Fomenko-Fuchs, Chapter 1 to learn about
the knot group (the fundamental group of the complement of the knot) and the Wirtinger presentation;
see also Hatcher Exercise 22 p.55, section 1.2. This is one situation where the van Kampen theorem is
very hepful (it was actually developed for some related questions). Try to work through some of the
exercises in Fomenko–Fuchs but do not submit anything.


