MAT 530 Topology, Geometry I

Problem Set 1

due Friday, September 11

Problem 1. Show that every open set in the standard topology on \mathbb{R} is a *countable disjoint* union of open intervals.

Problem 2. Metrics d_1 and d_2 on a set X are called *equivalent* if there are constants C, c > 0 such that

$$cd_1(\mathbf{x}, \mathbf{y}) \le d_2(\mathbf{x}, \mathbf{y}) \le Cd_1(\mathbf{x}, \mathbf{y})$$

for all $x, y \in X$. Show that equivalent metrics induce the same topology on X.

Problem 3. Let C be the space of real-valued continuous functions on [0, 1]. For $f, g \in C$ define

$$d_1(f,g) = \int_0^1 |f(x) - g(x)| dx, \qquad d_{sup}(f,g) = \sup_{0 \le x \le 1} |f(x) - g(x)|.$$

Show that d_1 and d_{sup} are metrics on C.

Prove that the topologies induced on C by these metrics are *different*. Is it true that one of them is finer than the other?

Problem 4. Let (X, d) be a metric space. Consider $Y = X \cup \{a\}$, where $a \notin X$ (i.e. Y is X with an extra point added). Define collections \mathcal{T}_1 , \mathcal{T}_2 of subsets of Y as follows:

 $U \in \mathcal{T}_1$ iff either $U \subset X$ and U is open in (X, d), or U = Y.

 $U \in \mathcal{T}_2$ iff either $U = \emptyset$, or $U = V \cup \{a\}$, where $V \subset X$ is open in (X, d).

Check whether each of \mathcal{T}_1 , \mathcal{T}_2 is a topology on Y, and if so, whether it can be induced by any metric on Y.

Problem 5. Let \mathcal{B} be a basis for the standard topology on \mathbb{R} . Prove that \mathcal{B} can always be decreased, i.e there is a set $U \in \mathcal{B}$ such that $\mathcal{B} - \{U\}$ is still a basis for the standard topology.

Please also do questions 1, 5 (basis part only) and 8b of Munkres §13.