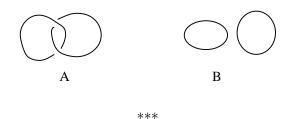
MAT 530 Topology, Geometry I

Problem Set 10 due Friday, November 20

1. Prove that the Möbius band does not retract to its boundary circle.

2. Let A be the union of two linked circles in \mathbb{R}^3 , B the union of two unlinked circles, as shown below. Prove that the complements $\mathbb{R}^3 - A$ and $\mathbb{R}^3 - B$ have non-isomorphic fundamental groups, thus showing that no homeomorphism $\mathbb{R}^3 \to \mathbb{R}^3$ takes A to B.



Do Question 9 of section 58 in Munkres to learn about degrees.

The following questions use the van Kampen theorem. (We will finish the proof in class on Monday and get some practice with applications.)

3. For every n > 2 construct a (path-connected) topological space X such that $\pi_1(X) = \mathbb{Z}/n$.

4. Let the space X be the quotient space of S^2 obtained by identifying the north and south pole. Compute $\pi_1(X)$. (There are several ways to do this.)

Please also do question 8 from section 1.2 of Hatcher (p.53).

Read in Munkres about the calculation of the fundamental groups of n-dimensional spheres from scratch. (We'll be lazy and just apply the van Kampen theorem in class.)