MAT 364, Homework 3 due 9/15

Only three questions this week, but Question 1 has several parts and requires a lot of work. (This question will be worth more points.)

1. (a) For each of the following collections of subsets of \mathbb{R} , check whether the given collection forms a basis of some topology on \mathbb{R} . (In other words, check if the conditions of Definition 1.5 are satisfied.) Justify your answers.

(i) $\mathcal{B}_1 = \{(m, n) \mid m, n \in \mathbb{Z}, m < n\}$ (all open intervals with integer endpoints);

(ii) $\mathcal{B}_2 = \{[a, b] \mid a, b \in \mathbb{R}, a < b\}$ (all closed intervals);

(iii) $\mathcal{B}_3 = \{(a, b] \mid a, b \in \mathbb{R}, a < b\}$ (all half-open intervals, open on the left, closed on the right);

(b) For each of the collections \mathcal{B}_i that does form a basis, consider the topology \mathcal{T}_i generated by this basis, and answer the following questions: is $(0, +\infty)$ open in this topology? Is the interval $(0, \sqrt{2})$ open?

(c) Compare each of the topologies \mathcal{T}_i from part (b) to the standard topology on \mathbb{R} : is \mathcal{T}_i the same as the standard topology? are these topologies comparable? is \mathcal{T}_i (strictly) finer or (strictly) coarser than the standard topology?

2. Let $Y = \{a, b, c, d, e\}$ be a set, with topology given by

$$\begin{aligned} \mathcal{T} = & \{ \emptyset, \{a\}, \{a, b\}, \{a, b, c\}, \{a, b, c, d\}, \{b\}, \{b, c\}, \{b, c, d\}, \{c\}, \{c, d\}, \{d\}, \\ & \{a, c\}, \{a, d\}, \{b, d\}, \{a, c, d\}, \{a, b, d\}, \{a, b, c, d, e\} \}. \end{aligned}$$

(a) Find a basis \mathcal{B} of this topology consisting of 5 non-empty sets. Explain why your collection \mathcal{B} satisfies the conditions of Definition 1.5. Show that the basis \mathcal{B} generates the topology \mathcal{T} given above.

(b) Give an example of a non-constant continuous function $f : \mathbb{R} \to Y$, where \mathbb{R} has its standard topology. Justify continuity using Theorem 4.3. Explain briefly why using this theorem is preferable to working with preimages of all open sets.

3. Let $f : \mathbb{R} \to \mathbb{R}$ be given by f(x) = |x|. Give a topological proof that this function is continuous in the standard topology on \mathbb{R} , working with the basis. (Use Theorem 4.3). Explain briefly why using this theorem is preferable to working directly from the definition.

Optional challenge question: question 1.16 from the textbook.

Optional reading: Theorem 1.13. (Please give a direct proof for Question 1.16 without referring to this theorem; the theorem generalizes the statement of the question.)

If you solve this question, it's a good idea to write and submit your solution; it will be checked (but no points will be given).