
MAT 364 - Homework 7 Solutions to Selected Exercises

Exercise 2.31, part (2): Give an example of sets A,B ∈ R2 such that A,B are connected,
but A−B is connected.

Let A = D2((0, 0), 1) and B = {(x, 0) ∈ R2 : −1 < x < 1}. The set A is convex, hence is
connected by Question 4 on this homework. (Compare with Q5, part (ii) on this homework). The
set B is homeomorphic to the open interval (−1, 1) with the standard topology as a subspace of R,
and it has been shown in class that open intervals of R are connected in the standard topology.

The set A − B can be written as A − B = U ∪ V , where U = A ∩ {(0, y) ∈ R2 : y > 0} (the
“upper half plane”) and V = A ∩ {(0, y) ∈ R2 : y < 0} (the “lower half plane”). Note that A and
both “half planes” are open in R2, so the intersections U, V are open in R2, hence are open relative
to A−B. Both A,B are nonempty - they contain (0, 1/2) and (0,−1/2), respectively. Finally, they
are disjoint, as no point (x, y) can have both y > 0 and y < 0. Thus A− B can be written as the
disjoint union of two nonempty open sets, hence A−B is not connected.

Note: When you are asked to give an example in a question, you must explain why your answer
is an example to get full credit. Thus for each part of this question, you had to show three things -
that A, B are connected (in parts 1,2) or disconnected (part 3) and also that the sets A∩B,A−B,
and A ∪ B are connected or not, as appropriate. Simply stating your choice of A and B is not
sufficient.

Question 1: Let X = {a, b, c, d}. Give examples of (1) two different topologies on X such that
both spaces are connected but not homeomorphic (2) two different topologies on X such that both
spaces are not connected but homeomorphic.

Solution: A solution will only be given for part 1, as the second part is very similar. For the first
part, you could choose the topologies T1 = {X, ∅} and T2 = {X, ∅, {a}}. To receive full credit, you
had to explain why your choices were topologies - note that T1 is the indiscrete topology, which we
know is a valid topology, and it is not hard to check that T2 is also a valid topology by considering
unions and intersections.

Next, we show that (X, T1) and (X, T2) are connected. Recall that we’ve already shown on a
previous homework that any space with the indiscrete topology is connected. To see that (X, T2) is
connected, we can observe that the only possible pairs of disjoint open sets are ∅, {a} and ∅, X. In
each case one of the pairs in the set is empty, so we cannot partition X into two disjoint, nonempty
open sets. Therefore no disconnection on X is possible with the T2 topology, hence the space is
connected.

Finally, we show that these spaces are not homeomorphic. Assume by contradiction that there
is a homeomorphism f : (X, T1)→ (X, T2). Consider f−1({a}). Because f is a homeomorphism, we
know that it is a bijection, hence the set f−1({a}) contains exactly one element. We also know that
homeomorphisms are continuous, so we have that f−1({a}) is open in the T1 topology. This is a
contradiction - there are no one-element open sets in the T1 topology. Thus our original assumption
that a homeomorphism exists is incorrect.

Note 1: We could prove that (X, T1) and (X, T2) are not homeomorphic another way. The
main fact is that if (X, T1) and (X, T2) are homeomorphic, then their topologies have to have the
same cardinality. (Try to prove this - assume that a homeomorphism f exists, and use the fact

1



that it is bijective with f, f−1 continuous to show that it induces a bijection between the sets T1
and T2). In our example, we have that |T1| = 2 and |T2| = 3, so the topologies are not homeomorphic.

Note 2: We showed that no homeomorphism could exist, not just that a particular function is
not a homeomorphism. For example, one could show that the identity function is not a homeomor-
phism, perhaps by showing that it is not continuous. After showing this, though, it could still be
possible that some other homeomorphism could exist - perhaps the function that takes a 7→ b, b 7→ a,
and fixes c, d could be a homeomorphism. Instead of trying to analyze all of the possible functions
on X and check one-by-one that they are not homeomorphisms, we argue as above.

Question 3: Let {Uα}α∈A be a collection of connected subsets of a topological space X. Assume
that

⋂
α∈A Uα is not empty. Show that the union

⋃
α∈A Uα is connected.

Solution: Assume by contradiction that U =
⋃
α∈A Uα is not connected. That is, there exists

A,B ⊂ U such that A ∪B = U , both sets are nonempty, A,B are disjoint, and A,B are relatively
open as subsets of U .

Because the intersection
⋂
α∈A Uα is nonempty, there exists some point z ∈

⋂
α∈A Uα. Without

loss of generality, we assume that z ∈ A. Because B is nonempty, we can also pick some w ∈ B.
Now w ∈ U , so there exists some Uα such that w ∈ Uα since U is a union of the Uα. We also have
that z ∈ Uα.

Then let Ā = A ∩ Uα and B̄ = B ∩ Uα. Note that these sets are both nonempty, as z ∈ Ā and
w ∈ B̄. Both Ā and B̄ are relatively open in Uα, since they are the intersection of the open sets
A,B with Uα. Their union is

Ā ∪ B̄ = (A ∩ Uα) ∪ (B ∩ Uα) = (A ∪B) ∩ Uα = U ∩ Uα = Uα

and their intersection is

Ā ∩ B̄ = (A ∩ Uα) ∩ (B ∩ Uα) = (A ∩B) ∩ Uα = ∅ ∩ Uα = ∅

that is, Ā and B̄ are disjoint.
Thus we can write Uα as the union Uα = Ā ∪ B̄ of disjoint, nonempty open sets, so that Uα is

not connected. But this contradicts the hypothesis that all the Uα are connected. Therefore our
original assumption is incorrect, that is, the union ∪α∈AUα is connected.

Question 4: Let W ⊂ Rn be a convex subset - that is, if x, y ∈ W , then the line segment
joining x to y in Rn is also contained in W . Show that W is connected.

Solution: Assume by contradiction that W is not connected. That is, there exists A,B ⊂ U
such that A ∪ B = W , both sets are nonempty, A,B, are disjoint, and A,B are relatively open as
subsets of W .

Because A and B are nonempty, we can choose points a ∈ A and b ∈ B, and let L be the line
segment joining those two points. Let Ā = A ∩ L and B̄ = B ∩ L. Using similar arguments as in
the previous problem, we can show that the sets Ā, B̄ are disjoint, nonempty subsets of W that are
relatively open in W . We also have that

Ā ∪ B̄ = (A ∩ L) ∪ (B ∩ L) = (A ∪B) ∩ L = W ∩ L = L.

The last equality in the line above is where we use the fact that W is convex. Convexity gives that
L ⊂ W , and therefore W ∩ L = L.
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Thus we can write L as the union L = Ā ∪ B̄ of disjoint, nonempty open sets, so that L is not
connected. But L is a line segment in Rn, hence homeomorphic to a closed interval in R, and we
know that closed intervals are connected. Thus L is connected, and we have a contradiction. Our
original assumption was wrong, and so W is connected.

Question 5: Determine with proof the connectedness of the the plane, the open disk, the plane
with a line or point removed, and the rationals in R.

Solution: For (i), (ii), which are R2 and the open disk D2(x, r) in R2, both with the standard
topologies, we can observe that both spaces are convex, hence connected by the previous question.

For (iii), we consider R2 with the x-axis removed. We can write this set as A ∪ B, where
A = {(x, y) ∈ R2 : y > 0} and B = {(x, y) : y < 0}, the upper and lower half planes. These sets
are clearly nonempty, disjoint, and open in R2, hence open in R2 − {x − axis}, so we have that
R2 − {x− axis} is not connected.

For (iv), consider A,B the upper and lower half planes as defined above, and let C,D be the
“left” and “right” half planes, C = {(x, y) : x < 0}, D = {(x, y) : x > 0}. Each of A,B,C,D is
connected, as they are convex. Note that A∩C is nontrivial (it is the second quadrant in the plane)
so therefore A ∪ C is connected. Then (A ∪ C) ∩ B is nontrivial (the third quadrant in the plane)
so (A ∪ B) ∪ C = A ∪ B ∪ C is connected. A similar argument with D shows that A ∪ B ∪ C ∪D
is connected, but this set is just R2 − {(0, 0)}, so the plane with the origin removed is connected.

For (v), let A = Q ∩ (−∞, α) and B = Q ∩ (α,∞) for α an irrational number. Note that A
and B are easily seen to be disjoint, open in the relative topology on Q, and nonempty. We also
have A∪B = Q, as A∪B = (R2−{α})∩Q = Q since α is irrational. Thus we can write Q as the
nonempty disjoint union of two relatively open sets, so Q is not connected.
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