Exercise 2.31, part (2): Give an example of sets $A, B \in \mathbb{R}^2$ such that A, B are connected, but $\overline{A - B}$ is connected.

Let $A = D^2((0,0), 1)$ and $B = \{(x,0) \in \mathbb{R}^2 : -1 < x < 1\}$. The set A is convex, hence is connected by Question 4 on this homework. (Compare with Q5, part (ii) on this homework). The set B is homeomorphic to the open interval (-1, 1) with the standard topology as a subspace of \mathbb{R} , and it has been shown in class that open intervals of \mathbb{R} are connected in the standard topology.

The set A - B can be written as $A - B = U \cup V$, where $U = A \cap \{(0, y) \in \mathbb{R}^2 : y > 0\}$ (the "upper half plane") and $V = A \cap \{(0, y) \in \mathbb{R}^2 : y < 0\}$ (the "lower half plane"). Note that A and both "half planes" are open in \mathbb{R}^2 , so the intersections U, V are open in \mathbb{R}^2 , hence are open relative to A - B. Both A, B are nonempty - they contain (0, 1/2) and (0, -1/2), respectively. Finally, they are disjoint, as no point (x, y) can have both y > 0 and y < 0. Thus A - B can be written as the disjoint union of two nonempty open sets, hence A - B is not connected.

Note: When you are asked to give an example in a question, you must explain why your answer is an example to get full credit. Thus for each part of this question, you had to show three things - that A, B are connected (in parts 1,2) or disconnected (part 3) and also that the sets $A \cap B, A - B$, and $A \cup B$ are connected or not, as appropriate. Simply stating your choice of A and B is not sufficient.

Question 1: Let $X = \{a, b, c, d\}$. Give examples of (1) two different topologies on X such that both spaces are connected but not homeomorphic (2) two different topologies on X such that both spaces are not connected but homeomorphic.

Solution: A solution will only be given for part 1, as the second part is very similar. For the first part, you could choose the topologies $\mathcal{T}_1 = \{X, \emptyset\}$ and $\mathcal{T}_2 = \{X, \emptyset, \{a\}\}$. To receive full credit, you had to explain why your choices were topologies - note that \mathcal{T}_1 is the indiscrete topology, which we know is a valid topology, and it is not hard to check that \mathcal{T}_2 is also a valid topology by considering unions and intersections.

Next, we show that (X, \mathcal{T}_1) and (X, \mathcal{T}_2) are connected. Recall that we've already shown on a previous homework that any space with the indiscrete topology is connected. To see that (X, \mathcal{T}_2) is connected, we can observe that the only possible pairs of disjoint open sets are \emptyset , $\{a\}$ and \emptyset, X . In each case one of the pairs in the set is empty, so we cannot partition X into two disjoint, nonempty open sets. Therefore no disconnection on X is possible with the \mathcal{T}_2 topology, hence the space is connected.

Finally, we show that these spaces are not homeomorphic. Assume by contradiction that there is a homeomorphism $f: (X, \mathcal{T}_1) \to (X, \mathcal{T}_2)$. Consider $f^{-1}(\{a\})$. Because f is a homeomorphism, we know that it is a bijection, hence the set $f^{-1}(\{a\})$ contains exactly one element. We also know that homeomorphisms are continuous, so we have that $f^{-1}(\{a\})$ is open in the \mathcal{T}_1 topology. This is a contradiction - there are no one-element open sets in the \mathcal{T}_1 topology. Thus our original assumption that a homeomorphism exists is incorrect.

Note 1: We could prove that (X, \mathcal{T}_1) and (X, \mathcal{T}_2) are not homeomorphic another way. The main fact is that if (X, \mathcal{T}_1) and (X, \mathcal{T}_2) are homeomorphic, then their topologies have to have the same cardinality. (Try to prove this - assume that a homeomorphism f exists, and use the fact

that it is bijective with f, f^{-1} continuous to show that it induces a bijection between the sets \mathcal{T}_1 and \mathcal{T}_2). In our example, we have that $|\mathcal{T}_1| = 2$ and $|\mathcal{T}_2| = 3$, so the topologies are not homeomorphic.

Note 2: We showed that no homeomorphism could exist, not just that a particular function is not a homeomorphism. For example, one could show that the identity function is not a homeomorphism, perhaps by showing that it is not continuous. After showing this, though, it could still be possible that some other homeomorphism could exist - perhaps the function that takes $a \mapsto b, b \mapsto a$, and fixes c, d could be a homeomorphism. Instead of trying to analyze all of the possible functions on X and check one-by-one that they are not homeomorphisms, we argue as above.

Question 3: Let $\{U_{\alpha}\}_{\alpha \in A}$ be a collection of connected subsets of a topological space X. Assume that $\bigcap_{\alpha \in A} U_{\alpha}$ is not empty. Show that the union $\bigcup_{\alpha \in A} U_{\alpha}$ is connected.

Solution: Assume by contradiction that $U = \bigcup_{\alpha \in A} U_{\alpha}$ is not connected. That is, there exists $A, B \subset U$ such that $A \cup B = U$, both sets are nonempty, A, B are disjoint, and A, B are relatively open as subsets of U.

Because the intersection $\bigcap_{\alpha \in A} U_{\alpha}$ is nonempty, there exists some point $z \in \bigcap_{\alpha \in A} U_{\alpha}$. Without loss of generality, we assume that $z \in A$. Because B is nonempty, we can also pick some $w \in B$. Now $w \in U$, so there exists some U_{α} such that $w \in U_{\alpha}$ since U is a union of the U_{α} . We also have that $z \in U_{\alpha}$.

Then let $\bar{A} = A \cap U_{\alpha}$ and $\bar{B} = B \cap U_{\alpha}$. Note that these sets are both nonempty, as $z \in \bar{A}$ and $w \in \bar{B}$. Both \bar{A} and \bar{B} are relatively open in U_{α} , since they are the intersection of the open sets A, B with U_{α} . Their union is

$$\bar{A} \cup \bar{B} = (A \cap U_{\alpha}) \cup (B \cap U_{\alpha}) = (A \cup B) \cap U_{\alpha} = U \cap U_{\alpha} = U_{\alpha}$$

and their intersection is

$$\bar{A} \cap \bar{B} = (A \cap U_{\alpha}) \cap (B \cap U_{\alpha}) = (A \cap B) \cap U_{\alpha} = \emptyset \cap U_{\alpha} = \emptyset$$

that is, \overline{A} and \overline{B} are disjoint.

Thus we can write U_{α} as the union $U_{\alpha} = \overline{A} \cup \overline{B}$ of disjoint, nonempty open sets, so that U_{α} is not connected. But this contradicts the hypothesis that all the U_{α} are connected. Therefore our original assumption is incorrect, that is, the union $\bigcup_{\alpha \in A} U_{\alpha}$ is connected.

Question 4: Let $W \subset \mathbb{R}^n$ be a convex subset - that is, if $x, y \in W$, then the line segment joining x to y in \mathbb{R}^n is also contained in W. Show that W is connected.

Solution: Assume by contradiction that W is not connected. That is, there exists $A, B \subset U$ such that $A \cup B = W$, both sets are nonempty, A, B, are disjoint, and A, B are relatively open as subsets of W.

Because A and B are nonempty, we can choose points $a \in A$ and $b \in B$, and let L be the line segment joining those two points. Let $\overline{A} = A \cap L$ and $\overline{B} = B \cap L$. Using similar arguments as in the previous problem, we can show that the sets $\overline{A}, \overline{B}$ are disjoint, nonempty subsets of W that are relatively open in W. We also have that

$$\bar{A} \cup \bar{B} = (A \cap L) \cup (B \cap L) = (A \cup B) \cap L = W \cap L = L.$$

The last equality in the line above is where we use the fact that W is convex. Convexity gives that $L \subset W$, and therefore $W \cap L = L$.

Thus we can write L as the union $L = \overline{A} \cup \overline{B}$ of disjoint, nonempty open sets, so that L is not connected. But L is a line segment in \mathbb{R}^n , hence homeomorphic to a closed interval in \mathbb{R} , and we know that closed intervals are connected. Thus L is connected, and we have a contradiction. Our original assumption was wrong, and so W is connected.

Question 5: Determine with proof the connectedness of the the plane, the open disk, the plane with a line or point removed, and the rationals in \mathbb{R} .

Solution: For (i), (ii), which are \mathbb{R}^2 and the open disk $D^2(x, r)$ in \mathbb{R}^2 , both with the standard topologies, we can observe that both spaces are convex, hence connected by the previous question.

For (iii), we consider \mathbb{R}^2 with the x-axis removed. We can write this set as $A \cup B$, where $A = \{(x, y) \in \mathbb{R}^2 : y > 0\}$ and $B = \{(x, y) : y < 0\}$, the upper and lower half planes. These sets are clearly nonempty, disjoint, and open in \mathbb{R}^2 , hence open in $\mathbb{R}^2 - \{x - axis\}$, so we have that $\mathbb{R}^2 - \{x - axis\}$ is not connected.

For (iv), consider A, B the upper and lower half planes as defined above, and let C, D be the "left" and "right" half planes, $C = \{(x, y) : x < 0\}, D = \{(x, y) : x > 0\}$. Each of A, B, C, D is connected, as they are convex. Note that $A \cap C$ is nontrivial (it is the second quadrant in the plane) so therefore $A \cup C$ is connected. Then $(A \cup C) \cap B$ is nontrivial (the third quadrant in the plane) so $(A \cup B) \cup C = A \cup B \cup C$ is connected. A similar argument with D shows that $A \cup B \cup C \cup D$ is connected, but this set is just $\mathbb{R}^2 - \{(0,0)\}$, so the plane with the origin removed is connected.

For (v), let $A = \mathbb{Q} \cap (-\infty, \alpha)$ and $B = \mathbb{Q} \cap (\alpha, \infty)$ for α an *irrational* number. Note that A and B are easily seen to be disjoint, open in the relative topology on \mathbb{Q} , and nonempty. We also have $A \cup B = \mathbb{Q}$, as $A \cup B = (\mathbb{R}^2 - \{\alpha\}) \cap \mathbb{Q} = \mathbb{Q}$ since α is irrational. Thus we can write \mathbb{Q} as the nonempty disjoint union of two relatively open sets, so \mathbb{Q} is not connected.