
CONNECTED SPACES AND HOW TO USE THEM

1. How to prove X is connected

Checking that a space X is NOT connected is typically easy: you just have to find two disjoint,
non-empty subsets A and B in X, such that A ∪ B = X, and A and B are both open in X. (Notice
that when X is a subset in a bigger space, say Rn, “open in X” means relatively open with respected
to X. Be sure to check carefully all required properties of A and B.)

To prove that X is connected, you must show no such A and B can ever be found - and just showing
that a particular decomposition doesn’t work is not enough. Sometimes (but very rarely) open sets
can be analyzed directly, for example when X is finite and the topology is given by an explicit list
of open sets. (Anoth example is indiscrete topology on X: since the only open sets are X and ∅, no
decomposition of X into the union of two disjoint open sets can exist.) Typically, however, there are
too many open sets to argue directly, so we develop several tools to establish connectedness.

Theorem 1. Any closed interval [a, b] is connected.

Proof. Several proofs are possible; one was given in class, another is Theorem 2.28 in the book. ALL
proofs are a mix of analysis and topology and use a fundamental property of real numbers (Completeness
Axiom). �

Corollary 1. All open and half-open intervals are connected; all rays are connected; a line is connected.

Proof. This follows from the theorem (argue by contradiction). For example, suppose that the ray
[0,+∞) is disconnected, ie [0,+∞) = A ∪ B, where A and B are non-empty, disjoint, and relatively
open. Pick a point a ∈ A, b ∈ B, and consider the closed interval I = [a, b] (we can assume a < b).
Then the sets A ∩ I and B ∩ I are non-empty, disjoint, and relatively open in I (check!). This means
that I is not connected, a contradiction. �

Theorem 2. A union of two intersecting connected (sub)spaces is connected. NAmely, suppose X =
U ∪ V , where U , V are both connected, and U ∩ V 6= ∅. Then X is connected.

Proof. Suppose X is not connected, X = A ∪ B, where A and B are non-empty, disjoint, and open.
Pick a point v ∈ U ∩ V . We can assume v ∈ A. Now, consider sets U ∩A and U ∩B. They are disjoint
and relatively open in U (why?); U ∩A contains v and so is non-empty. If U ∩B is non-empty as well,
we would get that U is disconnected; since it is given that U is connected, U ∩ B must be empty, and
so U ⊂ A. The same reasoning shows that V ⊂ B. But then X = U ∪V is contained in A, and B must
be empty. Comtradiction. �

Remark 1. The same proof goes through to show that a union of arbitrary number of connected spaces
sharing a point is connected. See also Lemma 3.30 in the textbook.)

Path-connectedness is a property that is longer to define but easier to establish than connectedness.
Intuitively, we ask that any two points of the space X could be connected by a path (a curve in X).
More precisely:
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Definition 1. A path in X is a continuous map γ : [0, 1] → X. If γ(0) = x, γ(1) = y, we say that γ
connects x and y, and that x and y are the endpoins of the path.

Technically speaking, we can consider paths γ : [a, b] → X whose domain is an arbitrary closed
interval. (Reparameterizing, we can get a path γ( t−a

b−a) whose domain is [0, 1]. The reparameterized path
is continuous because the expression in parantheses is contunuous, and the composition of continouous
functions is continuous.)

Definition 2. A topological space X is path-connected if every two points of X can be connected by
some path.

Path-connectedness is not hard to check for many subsets of a Euclidean space. In many situations,
one could connect points by a straight segment or a broken line or some other reasonably simple curve.
For example, a curve γ(t) = (cos t, sin t) travels along the unit circle and will connect two given points
if you choose its domain accordingly. For us, path-connectedness is useful because of the following:

Theorem 3. If a topological space is path-connected, then it is connected.

WARNING: the converse is not true! There are weird spaces that are connected but you cannot
make paths.

Proof. Suppose X is path-connected but not connected, ie X = A∪B, where A and B are non-empty,
disjoint, and open. Pick a ∈ A, b ∈ B, and find a path γ : [0, 1] → X connecting a and b. This
path breaks down into a part lying in A and a part lying in B, which implies that the interval is
disconnected. More precisely, we can write [0, 1] = γ−1(A) ∪ γ−1(B). (The set γ−1(A) consists of all
t’s such that γ(t) lies in A.) The sets γ−1(A) and γ−1(B) are both open (as preimages of open sets
under continuous function), they are disjoint and non-empty (why?). This means [0, 1] is disconnected,
a contradiction. �

2. Topological invariance

Theorem 4. Suppose X is connected, and f : X → Y is a continuous function which is onto. Then Y
is connected.

Remark 2. If f is not onto, Y may be disconnected. However, we can switch to the function f : X →
f(X) which is onto (and still continuous), and conclude that f(X) is connected. In words, the theorem
says that a continuous image of a connected set is connected.

Proof. Suppose Y is not connected, Y = A ∪ B, where A and B are non-empty, disjoint, and open.
Then X = f−1(A) ∪ f−1(B). These two sets are open (as preimages of open sets under a continuous
function); they are disjoint (no point goes to both A and B since A and B are disjoint) and non-empty
(because f is onto). Then X is not connected, a contradiction. �

Theorem 5. Suppose X and Y are homeomorphic topological spaces. Then X and Y are either both
connected or both disconnected.

Proof. This follows at once from the preceding theorem. (Recall that a homeomorphism is a continuous
bijection whose inverse is also continuous.) Or give a direct proof. �
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3. Connected components

Asking if a space is connected is basically asking whether it consists of one piece. If the space is not
connected, it makes sense to ask how many pieces it has.

WARNING: the definition below ONLY deals with the situation when X has FINITELY MANY
pieces (connected components). This is not always true - there spaces with infinitely many components
(think Q, for example). However, in the infinite case a different definition must be given. It is technically
a lot more involved, so we avoid the infinite case.

Definition 3. Suppose the space X is the finite union X = X1 ∪X2 ∪ · · · ∪Xk of non-empty subsets
such that

1) each Xi is connected; 2) each Xi is both open and closed in X. 3) all Xi are disjoint, ie no two
intersect.

Then we say that X1, X2, ...Xk are the connected components of the space X.

Note that a space with two or more connected components is disconnected. (Why? what are the
“A” and “B” from the definition?)

Remark 3. In fact we can just request that all Xi’s be open, and the closedness will follow (why?)

To identify connected components, you should find the corresponding subsets and carefully check all
required properties (that they are disjoint, non-empty, connected and open and closed in X).

Theorem 6. Suppose that X and Y are homeomorphic spaces. Then X and Y have the same number
of connected components. In fact, any homeomorphism between X and Y must match components of
X and components of Y .

Proof. Let f : X → Y be a homeo.
Let X0 a connected component of X. We will show that X0 is mapped into a single component of

Y (ie its image f(X0) cannot intersect two or more components). Indeed, suppose f(X0) intersects
components Y1, Y2, . . . , Yk. then X0 = (f−1(Y1) ∩X0) ∪ (f−1(Y2) ∩X0) ∪ · · · ∪ (f−1(Yk) ∩X0). Each
of the sets in the union is relatively open in X0 (why?), they are disjoint since Yi’s are disjoint, and all
are non-empty by our assumption. This implies that X0 is not connected, which is a contradiction.

Now run the above argument for f−1 : Y → X. It follows that each component of Y is mapped
under f−1 to a single component of X. This means that no two components of X could be mapped
by f into the same component of Y . Thus, each component of X goes to some single component of
Y , different components of X go to different components of Y , and every component of Y must be hot
(because f is onto). This means that f gives a bijection between components of X and those of Y , so
the two spaces must have the same number of components. �

4. Applications

With connectedness, we have developed our first topological property, ie a property (unlike size or
shape) that remains unchanged under homeomorphisms. This gives us a way to detect when two
topological spaces are not homeomorphic. Theorems 5 and 6 provide the basic idea. It can be pushed
further if we remove a point (or several) and look at its complement in our space:

Observation. Suppose the spaces X and Y are homeomorphic, via some homeomorphism f . Pick
a point x ∈ X. Then X \ {x} is homeomorphic to Y \ f(x), ie the complements of this point in X and
its image in Y are homeomorphic. (Note that this uses that f is bijective, ie no other points in X go
to f(x).)
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Corollary 2. A closed interval and an open interval are not homeomorphic.

Proof. Suppose [a, b] is homeomorphic to (c, d). Notice that [a, b] remains connected after removal of
an endpoint, but (c, d) becomes disconnected no matter which point you remove. More precisely, if
f : [a, b] → (c, d) is a homeomorphism, then f gives a homeo between (a, b] and (c, f(a)) ∪ (f(a), d).
The first of these is connected, the second isn’t (why?), a contradiction. �

Corollary 3. A circle is not homeomorphic to any interval.

Proof. An interval becomes disconnected if you remove its midpoint. The circle remains connected if
you remove an arbitrary point. (Indeed, a circle with a point removed is homeomorphic to an open
interval. Intuitively, this follows by “unbending” the interval. For a precise proof, you can consider
the bijection between (0, 1) and the unit circle, given by t 7→ (cos 2πt, sin 2πt). This function is clearly
a bijection, but why a homeomorphism? First, you need to understand the topology on the circle.
This is a topology of relatively open sets: the circle is a subset of R2. The basis is given by relative
neighborhoods; those are the intersections of neighborhoods in R2 (ie open disks) with the circle. But
these intersections are just open arcs in the circle! It is now clear that the standard basis of the topology
on (0,1) - all possible open intervals in (0,1) - is sent to the basis on the circle via the map above. This
means that we have a homeomorphism. �

We conclude by giving an application that uses a connected components count.

Corollary 4. The block capitals X and T (considered as subsets of R2) are not homeomorphic.

Proof. Idea: remove the center point in X. You get 4 connected components. Removing a point in T,
you never get more than 3 components, so X and T cannot be homeomorphic.

Now let’s make this idea precise. For concreteness, represent X as the set {(x, y) : y = ±x,−1 ≤
x, y ≤ 1}, and T as {(x, 0) : −1 ≤ x ≤ 1} ∪ {(0, y) : −1 < y < 0}. (One can wonder what happens if
the letters are represented in a slightly different way; it is not hard to check that any two “reasonable”
block capital shapes of the same letter are homeomorphic, but we will not worry about this.)

We need to understand the topology on X and T. Again, this is the subspace topology; relative
neighborhoods are given by intersections of open disks in R2 with the letter. This means that the
junction point of X has x-shaped neighborhoods, junction of T has T-shaped neighborhoods, and for a
point inside a leg of X or T, a (small) neighborhood is given by an open interval inside that leg. (What
are the neighborhoods of the endpoints of the legs?)

We now claim that X \ {(0, 0)} has 4 connected components. Indeed, these components are the four
intervals lying in the four quadrants of R2: X1 = {(x, y) : y = x, 0 < x ≤ 1}, X2 = {(x, y) : y =
−x,−1 ≤ x < 0}, X3 = {(x, y) : y = x,−1 ≤ x < 0}, X4 = {(x, y) : y = ±x,−1 ≤ x, y ≤ 1}.

Each Xi is homeomorphic to a half-open interval and therefore is connected. (To see the homeomor-
phism, you can appeal to the general fact that geometric congruence implies homeomorphism - never
mind we never checked that. For the specific case above, the projection of diagonal intervals to the
corresponding intervals on the x-axis will give a homeopmorphism: it is clear that projection is bijective
(for each Xi), and continuity of the projection and its inverse follows from the fact that it respects the
basis of topology (the basis is given by open intervals in each case).).

Each Xi is both relatively open and relatively closed in X \ {(0, 0)}. You can see this by analyzing
relative neighborhoods, or (easier) by noticing that X1 = X \{(0, 0)}∩{x > 0, y > 0}, and the quadrant
{x > 0, y > 0} is open. (Similarly for closed and for other Xi’s).

Now, suppose that X and T are homeomorphic, via some homeomorphism f : X → T . Then, if
we remove the point f(0, 0) from T, T must break into 4 connected components. But a quick analysis
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of cases shows that T has no such point. Indeed, if we remove the junction point, there will be 3
components (proof similar to the case of X above). If we remove a point inside a leg, there will be two
components (an interval and a T-shaped piece). Finally, if we remove an endpoint of a leg, there will be
a single T-shaped component. (As before, you need to show that each of the components is both open
and closed. This is similar to the case of X. You also need to show that the T-shaped piece is connected.
For this, use Theorem 2, as T is the union of the horizontal interval and the vertical interval.) �


