Problem Set 6

due Wednesday, October 13

Problem 1. Determine whether the following sets are compact or not. Prove your answers.

(a) $X = \{(x, y) \in \mathbb{R}^2 | x \ge 0, y \ge 0\}$, the graph of the function $y = \sin x$. **Solution.** Not compact since it's not bounded (x an be arbitrarily large). Here and below, we use the theorem that says that a set in \mathbb{R}^n is compact if and only if it is bounded and closed.

(b) $Y = \{(x, y) \in \mathbb{R}^2 | x \ge 0, y \ge 0\}$, the first quadrant . Solution. Not compact since not bounded.

(c) $Z = \{x^2 + y^2 + z^2 = 1\}$, a sphere in \mathbb{R}^3 . Solution. This is compact. Indeed, the sphere is bounded (it is contained in a ball of any bigger radius) and closed (check this by verifying that any point not on the sphere is interior).

(d) $V = \{0, 1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots\}$. Solution. V is both closed in \mathbb{R} and bounded, therefore compact. "Bounded" is clear. To check "closed", verify that every point $x \notin V$ is exterior. If x > 1 or x < 0, this is clear; if x is between 0 and 1, consider the neighborhood whose radius is less than the distance from x to the nearest points of the form 1/n.

(e) $W = \{1, \frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \dots\}$. Solution. This set is not closed, and therefore, non-compact. Indeed, $0 \notin V$ is not an exterior point, because every neighborhood of 0 will contain some point $1/n \in V$.

(d) $\mathbb{Q} \cap [0, 1]$, the set of rational numbers q such that $0 \leq q \leq 1$. Solution. This set is not closed, therefore non-compact. Every irrational point has rationals in every neighborhood, and thus cannot be exterior.

Problem 2. Suppose $A, B \subset \mathbb{R}^n$ are two compact sets. Prove that $A \cup B$ is compact. For more practice, please give three different proofs:

(a) from the definition with convergent subsequences

(b) from the characterization of compact sets in \mathbb{R}^n

(c) from the definition with open covers (to be discussed in Friday class).

Solution. (a) Consider a sequence $\{x_n\} \in A \cup B$. We'd like to find a convergent subsequence. For this, break $\{x_n\}$ into two sequences, the one consisting of points x_n lying in A, the other of points x_n lying in B. At least one of these will actually be an infinite sequence. (Otherwise we only have finitely many x_n 's, a contradiction.) Now, if there is an infinite sequence in A, we can find a convergent subsequence (A is compact); this is a convergent subsequence of the original sequence $\{x_n\}$.

(b) We know that both A and B are closed and bounded, and need to check the same for $A \cup B$. Indeed, if A is in the ball $D(0, r_A)$, B is in the ball

 $D(0, r_B)$, let R to be the biggest of r_A , r_B , and then $A \cup B$ is in the ball D(0, R). For "closed", recall that the union of two closed sets is always closed.

(c) Given a cover for $A \cup B$ by open sets, we want to get rid of some of the sets, so that only finitely many remain and $A \cup B$ is still covered. Notice that the cover for $A \cup B$ covers A, so we can pick finitely many sets of that cover to cover A. Similarly, find a finite subcover for B. Now, put the two finite subcovers for A and B together; this is a finite subcover for $A \cup B$.

Problem 3. We will prove in class on Friday that if $f : D \to R$ is a continuous function, and X is a compact set in D, then f(X) is compact. (Here $D \subset \mathbb{R}^n$, $R \subset \mathbb{R}^m$ as usual). Show that

(a) if $f: D \to R$ is continuous, and X is closed in \mathbb{R}^n , $X \subset D$, then f(X) doesn't have to be closed.

(b) if $f: D \to R$ is continuous, and X is a bounded subset of D, then f(X) doesn't have to be bounded.

(Give counterexamples and justify all the properties you need.)

Solution. (a) Consider the function f = 1/x, $X = [1, +\infty)$ a closed set. $f: (0, +\infty) \to \mathbb{R}$ is continuous, but f(X) = (0, 1] is not closed.

(b) Same function, $f: (0, +\infty) \to \mathbb{R}$, f = 1/x. Take bounded set X = (0, 1), then $f(X) = (1, +\infty)$ is unbounded.