A BRIEF INTRODUCTION TO LOBACHEVSKIAN GEOMETRY

OLGA PLAMENEVSKAYA

ABSTRACT. These are lecture notes for MAT 360, Spring 2011.

1. A BIT OF HISTORY AND DISCUSSION OF AXIOMATICS

Euclid’s famous ”5th postulate” states that, given a line [ in the plane and a point A
not on [, there exists a unique line passing through A and parallel to [. The point of the
postulate is that we can never have two different lines with this property. Indeed, it is not
hard to prove (using other axioms) that a line through A that is parallel to [ exists; such a
line can be constructed with a compass and straightedge.

What exactly does it mean that the 5th postulate cannot be derived from other axioms?
People certainly tried to prove the uniqueness of the parallel line - the statement looks like
it could be a theorem. (Recall, for example. that uniqueness of a perpendicular from a
given point to the given line can be easily proved.) However, no-one was able to prove this
uniqueness of parallels. Does this mean that it cannot be proved? Not really: perhaps
the proof was just too difficult and elusive for anyone to discover. To demostrate that the
5th postulate cannot be proved, one really needs to show that it is ”independent” from the
other axioms; indeed, one needs to demonstrate that there exists a ” geometry” that satisfies
all the other axioms (such as, through any two points there is a unique line, the existence
of certain isometries, etc) but not the uniqueness of parallels. Such a ”geometry” was first
constructed by Lobachevsky in early 19th century; the construction he came up with is now
called the Lobachevskian plane.

Before delving into the details of the construction, let us discuss what is meant by ”ge-
ometry” and by the lack of uniqueness of parallels. Does it mean that in an alternative
universe, one could suddenly draw a bunch of different lines through A, and none of those
lines would intersect [?7 In a sense, yes — but the ”lines” and ”points” might look quite
different from those in Euclidean geometry. To understand this better, let us consider the
axioms of the arithmetics of numbers. Those are very familiar - one can add and multiply
integer numbers, and they satisfy certain properties, such as a+b = b+a, a(b+c) = ab+ac,
(a +b)c =ac+be, a+ (—a) =0, ab = ba, etc. If one accepts the rest of the properties as
axioms, can the last one, ab = ba, be proved as a theorem? To show that this property is
independent from other axioms, one needs to construct some alternative version of "num-
bers” that satisfy all the other axioms, but not ab = ba. Again, this doesn’t mean that in
alternative universe, the multiplication table goes wrong, and 5 -3 # 3 - 5; rather, "num-
bers” can be some more involved objects. For example, if the inhabitants of the alternative
universe are working with matrices instead of numbers, this will be exactly the situation
described above. (Recall that n x n matrices can be added and multiplied, and have a lot of
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nice properties, such as A+ B = B + A, etc; however, in general AB and BA are different
matrices.)

2. THE POINCARE MODEL

Let us now describe one possible construction of the Lobachevskian geometry, and set
up a “dictionary” that will tell us what kind of things will play the roles of the plane, lines,
points, angles, isometries, etc. This particular construction is called the Poincaré model (or
the Poincaré plane).

2.1. The plane, points and lines. Fix a circle Cj in the plane, centered at some point O,
and let D be the disk that it bounds. The disk D will be our “plane” for the non-FEuclidean
geometry; the “points” are the points in D (not including the boundary circle Cj). The
“lines” will be circles that are orthogonal to Cy (or rather, the arcs of these circles that lie
in D), together with all diameters for Cy. Here and below, the angle between two circles
(or the angle between a circle and a line) is understood to be the angle between the tangent

lines at the intersection point.
“ )
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FiGURE 1. The Poincaré model.

Before moving on, let’s make a couple of observations about orthogonal circles.

Lemma 1. Let ¢ be a circle orthogonal to Cy, and let A and B denote the intersection
points of circles Cy and c. Then the tangent lines to ¢ at A and B intersect at O; similarly,
the tangent lines to Cy at A and B intersect at the center of c.

Proof. Recall that the radius OA of the circle Cy is perpendicular to the tangent line ¢
to Cp at A. Since the tangent line [ to ¢ at A is also perpendicular to ¢ (the circles are
orthogonal), | contains the radius OA and thus goes though O. Similarly, the tangent line
m to ¢ at B contains the radius OB, so [ and m intersect at O. (The tangents to the circle
Cy are treated in exactly the same way.) See Figure 2. O

Lemma 2. None of the circles orthogonal to Cy pass through O.

Proof. This is a corollary of the previous lemma. Indeed, if ¢ is a circle orthogonal to Cp,
its tangents (at the intersection points with Cp) meet at O, and thus this point lies outside
of the circle. O
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FIGURE 2

These two lemmas give us a better understanding of the Poincare disk picture. Indeed,
when the radius of the circle ¢ gets larger and larger, this circle gets closer and closer to
O, and its arc inside D looks more and more like a straight segment; that is, very close
to O “lines” look almost like Euclidean lines, and closer to Cy they become more curved.
Notice also that any diameter of Cy is perpendicular to Cy (and no other chords have this
property). Thus we can say that the “lines” in the Poincaré plane are the lines and circles
orthogonal to Cj.

2.2. Isometries. Now let’s try to see what could be meant by “isometries” in this setup.
We should expect “isometries” to map the “plane” to itself, and to map “lines” to “lines”.
Clearly, rotations about O and reflections through any diameter have these properties.
More interestingly, inversions through circles orthogonal to Cy also work: we know that
they send lines/circles to lines/circles and preserve angles, so they have to map lines/circles
perpendicular to Cy to lines/circles perpendicular to Cy. We've shown that these special
inversions map “lines” to “lines”. Now let’s check that they map the “plane” D to itself.
Indeed, if ¢ is orthogonal to Cjy and intersects it at A and B, and I, is the inversion through
¢, the image of Cy is 1) a circle (it can’t be a line because Cy doesn’t go through the center
of ¢), 2) orthogonal to ¢, 3) intersects ¢ at the same points A and B. By Lemma 1, the
center of the image of Cy must be at O, and this implies that Cy is mapped to itself. Now
we are ready to state that:
The “isometries” of the Poincaré plane are taken to be all reflections through diameters of
Co, inversions through circles orthogonal to Cy, and arbitrary compositions of (any number
of ) such reflections and inversions.

Note that rotations about O can be written as compositions of reflections. One can do
a detailed study of compositions of reflections/inversions (similar to what we did in the
Euclidean case), and show that all “isometries” have fairly simple form. We will not pursue
this.

Theorem 3. Given two arbitrary points A, B in the Poincaré plane, two arbitrary “rays”
"+, Ug with vertices at these points, and two chosen “half-planes” Ha, Hp cut off by the
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“line” la resp. lp, there exists a unique isometry I mapping A to B, Iy to lly, and Ha to
Hp.

FIGURE 3

Proof. First, let’s see what “rays” and “half-planes” mean in our language. As always,
a “ray” is a part of a “line” cut off by a point; since a typical line is an arc orthogonal
to Cp, a “ray” is half-arc (see Figure 3). Similarly, a “line” divides the “plane” into two
“half-planes”, so “half-planes” must be the curved regions as shown.

For the existence part of the proof, it suffices to find the required “isometry” for the case
where one of the points is O, the center of Cy. Indeed, if 14 is an “isometry” taking A to
O, 'y to some given lj,, and H,4 to some given Hp, and Ip is a similar “isometry” for B,
then I5' o I4 is an “isometry” taking A to B, Iy to l'y, and Ha to Hp. (Why?) The case
when one the points is O is easier because then I, is a radius and Ho is a half-disk of D cut
off by the corresponding diameter. So if we find an “isometry” taking A to O, we can then
match the rays by a rotation at O, and the half-planes by a reflection though a diameter.
(Make sure you understand this!)

Co

FIGURE 4

It remains to find an “isometry” taking A to O; indeed we’ll find an inversion with this
property. The center of such inversion must lie on the ray OA (why?); we need to locate
its center X. The point X can be constructed as follows. Raise a perpendicular to OA at
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A, and let T be its intersection with Cy. Draw a tangent line to Cy at T'; then X is the
intersection of this tangent and the line OA. (Figure 4.) Let ¢ be the circle centered at X
with radius XT'; then c is orthogonal to Cj (this is the converse to Lemma 1). Since the
triangles AOT X and AT AX are similar (why?),

OT XT
XT XA
so | XA|-|XT| = |XT|? It follows that the inversion through ¢ maps O to A.

We will not prove the uniqueness part of the theorem as this requires classification of
isometries. U

2.3. Congruent figures. As in Euclidean geometry, we will call two figures ”congruent”
if they can be matched by an ”isometry”. In particular, one can talk about ”congruent
segments” - typically those will be arcs of circles perpendicular to Cy and appear to be of
different (Euclidean) size. However, they are congruent in our sense whenever one can be

transformed into another by an ”isometry” (such as inversion).

2.4. How about distance? Recall that the word isometry is supposed to refer to distance-
preserving maps. This seems to be a contradiction since inversions clearly don’t preserve
the Euclidean distance: the inversion through a circle ¢ of a small radius swaps the large
region outside of ¢ and the small region inside. However, this only means that the Euclidean
distance is not the right one to use in our setup. Indeed, one can introduce a “distance” in
the Poincaré plane (given by a complicated formula) that is preserved by the “isometries”
and satisfies the triangle inequality and other natural properties. If two (non-Euclidean)
”segments” are ”congruent”, the ”distance” between their endpoints will be the same. We
will not discuss distance in further detail.

2.5. Angles. The “angles” turn out to be simple in our setup: they are just the Fuclidean
angles (measured between lines and/or circles by considering tangents when necessary.)
Notice that just as one would expect, all the “isometries” preserve “angles” (because the
Euclidean angles are preserved by inversions and reflections.) One could also compare two
angles, by matching their vertices and lining up one of the sides by an ”isometry”.

In the non-Euclidean context, one could establish a lot of familiar theorems: the congru-
ence tests for triangles, the statement that opposite the greater “angle” in a triangle lies a
greater “side”, etc. It is a very good exercise to think back to the familiar Euclidean proofs
and repeat them for the Poincaré model.

3. AXIowMms

To call our construction a geometry, we need to check that the necessary axioms are
satisfied. We have already seen a fundamental property of isometries (Theorem 3 above).
Now, let us prove

Theorem 4. Through any two “points” in the Poincaré “plane” there exists a unique
“line”.
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Before turning to the proof, let’s see what’s happening here. Are we trying to prove an
axiom?! Not quite — we are trying to prove that a particular (fairly weird!) construction
has the same properties as we expect in the Euclidean geometry. We will translate the
statement above to the Euclidean terms: the theorem says that through any points A, B
in D one can draw a segment of the diameter or an arc of a circle orthogonal to Cy (but
not both), and that such a segment or an arc is unique.

Studying arcs of orthogonal circles is not that easy; instead, we will use “isometries” for
a helpful trick. Indeed, by Theorem 3 we can find an “isometry” I that maps the point A
to O (the center of Cp), and B to some other point X. Note that I would map any “line”
through A and B to a “line” through O and X, and that the inverse “isometry” I-! (why
does it exist?) maps any “line” through O and X to a “line” through A and B. Thus, to
prove existence and uniqueness of a “line” through A, B, it suffices to prove the existence
and uniqueness of a line through O, X. The latter is easy: since O is the center, there is
a unique line OX which is a segment of the diameter. There can be no arcs of othogonal
circles though O, X, since none of those circles passes through O (Lemma 2).

Corollary 5. Any two distinct “lines” intersect at one point at most.

Proof. The proof is exactly the same as in Euclidean geometry (except that the meaning of
the word “line” is different): if two distinct “lines” met at two points A and B, there would
be two different lines through A, B, which contradicts the previous theorem. O

Many basic theorems in the Poincaré model can be proved by repeating the corresponding
proofs in Euclidean geometry (with a different interpretation of all relevant terms). For
example:

Theorem 6. Given a “line” | and a point A not on l, there exists a unique “perpendicular”
dropped from A to l.

Proof. Let’s use the strategy from Euclidean geometry: consider the point A’ symmetric to
A about the “line” [, draw the “line” m through A and A’, and use symmetry to show that
m and [ intersect at the right angle. Here, if the “line” [ is a circle in Euclidean geometry,
the symmetry about [ is to be understood as inversion through the corresponding circle.
Similarly, the “line” m through A and A’ may be a line or a circle; the symmetry (together
with uniqueness of the “line” through A, A") implies that m goes to itself under the inversion
through [. Then it is not hard to see that m must be orthogonal to (.

By a similar reasoning, if there were two perpendiculars from A to [, one could use
symmetry to construct two “lines” through A, A’.

(This is only a sketch of the proof; working out the details is a useful exercise.) i

The notion of “parallel” lines can be introduced in our setup as well: two “lines” are
called parallel if they don’t meet. As in Euclidean geometry, one can show that for any
given “line” [ and point A not on [ there is a line m passing through A and parallel to I:
drop a “perpendicular” p from A to [, construct a “line” m perpendicular to p and passing
through A. Then [ and m are parallel: if they met at any point, there would be two
perpendiculars (I and m) from that point to p.

Uniqueness of the parallel line (for given I, A) is strikingly absent. (Recall that this is
the whole purpose of our model of non-Euclidean geometry.)
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Theorem 7. Through any point A there exist infinitely many “lines” parallel to the given
line [.

Proof. See Figure 5. g

\/

FI1GURE 5. The lines parallel to [.

4. THE SUM OF ANGLES IN A TRIANGLE

In Euclidean geometry, the sum of angles in any triangle is 180 degrees. This is a corollary
of the 5th postulate. Since the 5th postulate is no longer true in non-Euclidean geometry,
we shouldn’t expect the sum of angles to automatically remain the same — we certainly
cannot “translate” the Euclidean proof into our context. It turns out that:

Theorem 8. The sum of angles of any “triangle” in the Lobachevskian plane is strictly less
than the straight angle.

Proof. Notice that “triangles” have sides that are segments of “lines” - ie segments of
diameters or arcs of circles orthogonal to Cj.

Since “isometries” do not change angles, we can apply an “isometry” sending one of
the vertices of a given triangle to the center O of Cy. Thus, it suffices to show that any
“triangle” OAB has a sum of angles less than 180 degrees. Such a “triangle” has two
straight sides meeting at O, and one curved side AB. It will be helpful to consider the
Euclidean triangle with the same vertices, i.e. replace the arc AB by a straight segment. In
the Euclidean triangle, the angles add up to 180 degrees. The angle O is clearly the same
in the straight-sided and curved triangles. The angles A and B are smaller for the curved
triangle (see Figure 6); therefore, the curved triangle has the sume of angles less than 180
degrees. O

It is interesting to notice that for small triangles near the point O, the sum of angles gets
close to 180 degrees; the non-Euclidean effects become more noticeable when one approaches
the coundary circle Cp.
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FIGURE 6



