MAT 360 Geometry

Homework 9 due Thursday, Apr 18

Problem 1. Prove that the midpoints of the sides of a quadrilateral are always vertices of a parallelogram. Determine under what conditions this parallelogram is (a) a rectangle, (b) a rhombus. **Hint:** use material from sections 93-97.

Problem 2. We proved that any isometry of the plane belongs to one of the following types: rotation, translation, reflection or glide reflection.

(a) Which of these types can be obtained as a composition of 2013 reflections?

(b) Which of these types can be obtained as a composition of 2013 rotations? Give examples for the types that can be obtained, and prove that the remaining types cannot.

Problem 3. Prove that the composition of two similarity mappings (with coefficients k resp. l) is a similarity mapping. What is its coefficient?

A useful special case is a composition of a similarity transformation and an isometry (the result is a similarity transformation).

Problem 4. (a) Prove that any two circles are similar.

(b) Suppose that triangles $\triangle ABC$ and $\triangle A'B'C'$ are such that

$$\angle A = \angle A', \qquad \frac{A'B'}{AB} = \frac{A'C'}{AC}.$$

Prove that these triangles are similar.

Recall our definition of similar figures: you have to show that there exists a similarity transformation that sends one of them to the other. We have checked that homotheties are similarity transformations, and so are isometries.

Problem 5. (a) Show that two homotheties with different centers A, B and the same ratio k differ by rotation or translation, i.e. $H_{A,k} = R \circ H_{B,k}$, where R is some rotation or translation that depends on the homotheties.

(b) More precisely, prove that $H_{A,k} = T \circ H_{B,k}$, where T is the translation by the vector $(k-1)\vec{AB}$.

Part (a) follows from part (b), but is much easier to prove.

Please also do questions **332**, **338(a)** from the textbook.