MAT 319: MIDTERM 2 SOLUTIONS

- 1. Determine whether each of the following statements is true or false, and circle your answer. No explanations or justifications are needed.
 - (a) The Monotone Convergence Theorem says that every monotone sequence converges.

FALSE

(b) If (x_n) converges to 0, there exists a subsequence (x_{n_k}) that converges to 1.

FALSE

(c) The Squeeze Theorem says that if (x_n) , (y_n) , and (z_n) are three sequences, $x_n \leq y_n \leq z_n$, and $\lim x_n = a$, $\lim z_n = b$, then $a \leq \lim y_n \leq b$.

FALSE

(d) If $\lim x_n = +\infty$, $\lim y_n = -\infty$, then $\lim (x_n + y_n) = 0$.

FALSE

(e) Every bounded sequence has a convergent subsequence.

TRUE

2. Determine whether the following sequences are convergent or divergent, and justify your answer. You may use any theorems from the course, but you have to give a clear reference and explain exactly how you apply the theorem.

(a)
$$x_n = \frac{n^2 + 1}{1 + 3n - n^2} = -1.$$

SOLUTION:
$$x_n = \frac{n^2 + 1}{1 + 3n - n^2} = \frac{1 + 1/n^2}{1/n^2 + 3/n - 1}$$
. We

know that $\lim \frac{1}{n} = 0$, $\lim 1 = 1$, $\lim 3 = 3$. By the Product Rule for limits, $\lim 1/n^2 = 0$ and $\lim 3/n = 0$. By the Sum Rule, $\lim(1+1/n^2) = 1+0 = 1$, $\lim(1/n^2+3/n-1) = 0+0-1 = -1 \neq 0$. By the Quotient Rule, $\lim x_n = 1/(-1) = -1$. $\cos(n^2)$

(b) $y_n = \frac{\cos(n^2)}{n^2} = 0.$ SOLUTION: Observe that $-1 \le \cos(n^2) \le 1$. Then $-1/n^2 \le \cos(n^2)/n^2 \le 1/n^2$. Because $\lim 1/n^2 = \lim -1/n^2 = 0$, $\lim y_n = 0$ by the Squeeze theorem.

- 3. (a) Suppose that the sequence (x_n) does NOT converge to 5. State what this means in terms of " ε , K". (Construct a negation for the definition of the limit.) SOLUTION: There exists $\varepsilon > 0$ (" a bad epsilon") such that for every $K \in \mathbb{N}$ there exists $n \geq K$ such that $|x_n - 5| \geq \varepsilon$.
 - (b) Let $y_n = 3 + (-1)^n 2$. Arguing from definitions, show that (y_n) does not converge to 5. SOLUTION: Set $\varepsilon = 1$ and show that this is a "bad epsilon" from the above statement. Indeed, for every $K \in \mathbb{N}$ there exist an odd number $n \ge K$ (e.g. n = K or n = K + 1). We have $y_n = 3 + (-1)^n 2 = 3 - 2 = 1$, and so $|y_n - 5| = 4 > \varepsilon = 1$.
- 4. Suppose that $\lim x_n = +\infty$. Show that (x_n) is bounded below. SOLUTION: Fix an arbitrary $\alpha \in \mathbb{R}$, say $\alpha = 0$. By definition, $\lim x_n = +\infty$ means that there exists $K \in \mathbb{N}$ such that $x_n > \alpha$ for all $n \ge K$. Therefore, the set $\{x_K, x_{K+1}, x_{K+2}, \ldots\}$ is bounded below by α . The set $\{x_1, x_2, \ldots, x_{K-1}\}$ is finite, and therefore bounded below by $m = \min\{x_1, x_2, \ldots, x_{K-1}\}$. It follows that (x_n) is bounded below by $\min(\alpha, m)$.
- 5. Let the sequence (x_n) be defined by $x_1 = 6$, $x_{n+1} = \frac{2}{3}x_n + 1$ for $n \in \mathbb{N}$. Prove that (x_n) converges, and find its limit.

SOLUTION: We will prove that (x_n) is decreasing and bounded below. Then it has a limit by monotone convergence theorem.

First, observe that $x_1 > 0$, and that x_n remains positive for all n, so 0 is a lower bound.

Prove that $x_n > x_{n+1}$ by induction. Base: $x_1 = 6 > x_2 = 5$. Induction step: let *n* be arbitrary, and assume that $x_n > x_{n+1}$. Then $x_{n+1} = 2/3x_n + 1 > 2/3x_{n+1} + 1 = x_{n+2}$. It follows that the sequence decreases. Now, suppose $\lim x_n = L$. Then $\lim x_{n+1} = L$ (a tail has the same limit); on the other hand, $\lim x_{n+1} = \lim(2/3x_n + 1) = 2/3L + 1$. Solve L = 2/3L + 1, get L = 3.

6. Let (x_n) be a sequence such that $\lim x_n = 0$. Consider the sequence (y_n) , where

$$y_{2n-1} = x_n, \quad y_{2n} = \frac{1}{n} \qquad \text{for all } n \in \mathbb{N}.$$

(The first few terms of this sequence are $x_1, 1, x_2, \frac{1}{2}, x_3, \frac{1}{3}, ...$) Using the definition of the limit, prove that the sequence y_n converges and find its limit.

SOLUTION: Obviously, both subsequences (y_{odd}) and (y_{even}) tend to 0. By definition of limit, this means that for every $\epsilon > 0$, there exist $K_1, K_2 \in \mathbb{N}$ such that $|y_{2n-1} - 0| < \epsilon$ for all n such that $2n - 1 \ge K_1$, and also $|y_{2n} - 0| < \epsilon$ for all n such that $2n \ge K_2$. Set $K = \max(K_1, K_2)$, then $|y_n - 0| < \epsilon$ for all $n \ge K$.

7. Show that if (x_n) tends to $-\infty$, then $x_n + 10$ also tends to $-\infty$. SOLUTION: By definition, we must show that for every α there exists $K \in \mathbb{N}$ such that $x_n + 10 < \alpha$ for all $n \geq K$. Because (x_n) tends to $-\infty$, for $\beta = \alpha - 10$ there exists $K' \in \mathbb{N}$ such that $x_n < \beta = \alpha - 10$ for all $n \geq K'$. Now for K = K' we have $x_n + 10 < \alpha - 10 + 10 = \alpha$ for all $n \geq K$.