
MAT 319: MIDTERM 1
SOLUTIONS

1. Determine whether each of the following statements is true or
false, and circle your answer. No explanations or justifications
are needed.
(a) The Archimedean property says that for every real number

x there exists a natural number n such that x < n.
TRUE FALSE

(b) Let A be a countable set and B, an uncountable set. Then
A ∪B is uncountable.

TRUE FALSE
(c) For every two real numbers x, y, |x| − |y| ≤ |x− y|.

TRUE FALSE
(d) Every real number has a unique decimal representation.

TRUE FALSE
(e) Every set bounded from below has a supremum.

TRUE FALSE

2. Let f : X → Y be a map, A ⊂ X, B ⊂ Y .
(a) Is it always true that f−1(f(A)) = A?

Prove or give a counterexample.
Solution: The statement is false. Counterexample: let
f(x) = x2 and A = {1}. Then f(A) = {1} but f−1(f(A)) =
{−1, 1} 6= A.

(b) Is it always true that f(f−1(B)) = B?
Prove or give a counterexample.
Solution: This is also false. Counterexample: let f(x) =
x2 and B = {−1}. Then f−1(B) = ∅ and f(f−1(B)) 6= B.

3. Prove that for every natural number n,

1 · 1! + 2 · 2! + · · ·+ n · n! = (n + 1)!− 1.

Solution: Induction base: for n = 1, 1 · 1! = 2!− 1.
Induction step: assume the statement holds for n = k. Then

1 ·1!+2 ·2!+ · · ·+k ·k!+(k+1) · (k+1)! = (k+1)!−1+(k+1) ·
(k+1)! = (1+k+1)(k+1)!−1 = (k+2)(k+1)!−1 = (k+2)!−1,
hence the statement holds for n = k + 1.
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4. For this question, you can use all the algebraic properties of R
without any explanations. You must, however, justify every-
thing that concerns the order properties.
Recall that the set of positive numbers P is defined as a non-
empty subset of R that satisfies the following properties:
(i) If a, b ∈ P, then a + b ∈ P.
(ii) If a, b ∈ P, then ab ∈ P.
(iii) If a ∈ R, then exactly one of the following holds:

a ∈ P, a = 0, −a ∈ P.

We also showed in class that
(iv) 1 ∈ P.
Also, recall that by definition x > y if and only if x− y ∈ P.
(a) Using properties (i)–(iv), show that if a ∈ P, then 1/a ∈ P.

Solution: Assume that 1/a 6∈ P. Then by (iii) either 1/a = 0
or −1/a ∈ P. In the former case, we have 1 = a·(1/a) = a·0 = 0,
contradiction. In the latter case, a · (−1/a) ∈ P by (ii). Hence
−1 ∈ P. By (iv), we also have 1 ∈ P, which contradicts (iii).
(b) Using properties (i)–(iv) and the definition for x > y, show
that if u, v ∈ P and u > v, then 1/v > 1/u.

Solution: We have to prove that 1/v − 1/u ∈ P. Since

1

v
− 1

u
=

u− v

uv
= (u− v)

1

uv
,

by (ii) it suffices to prove that u−v ∈ P and 1/uv ∈ P. The first
statement follows because u > v. To show that 1/uv ∈ P, note
first that u, v ∈ P, hence by (ii), uv ∈ P. By part (a), 1/uv ∈ P.

5. Prove that the set S of all roots of natural numbers,

S = {x ∈ R : x = n
√

m for m,n ∈ N},

is countable.
Solution: Note first that the set S cannot be represented

by the set of all pairs (n, m) since each number in S can be
represented by different roots. For example,

√
2 = 4

√
4, 3
√

125 =√
25 etc. However, S can be viewed as a subset of N× N.
For each x ∈ S consider all pairs (n, m) such that x = n

√
m.

Choose the pair with minimal n. Thus for each x ∈ S, we
choose exactly one pair (n, m). This establishes a one-to-one
correspondence between S and a subset of N× N. Since N× N
is countable, so is S.

Another Solution: Use the diagonal method to enumerate
elements of S. Just as in the solution above, we have to be



careful about choosing exactly one pair (m,n) to represent an
element of S and avoid pairs (m, n) that represent a root n

√
m

that we already counted.

6. Let f : [0, 1] → R be a bounded function.
Define the function g : [0, 1] → R by g(x) = −f(x).
Show that if sup0≤x≤1 f(x) = a, then inf0≤x≤1 g(x) = −a.

Solution: First of all, we have to show that −a is a lower
bound of g(x). Let x ∈ [0, 1]. Then f(x) ≤ a. Hence −f(x) ≥
−a, i.e. g(x) ≥ −a making −a a lower bound.

Now, let b be a lower bound of g(x) such that b > −a. Then
g(x) ≥ b for all x ∈ [0, 1]. Hence f(x) ≤ −b. But −b < a which
contradicts a being the supremum of f(x).

7. (a) State the Nested Intervals Property.
Solution: Let In, n = 1, 2, 3 . . . be a sequence of nested
(In+1 ⊆ In) closed, bounded intervals. Then

⋂∞
n=1 In is non-

empty. [The closed, bounded condition is very important.
Without it, the theorem is not true.]

(b) Give an example of a sequence In, n = 1, 2, 3 . . . of nested
open, bounded intervals, such that

∞⋂
n=1

In = ∅.

(Prove that the intersection is empty).
Solution: Let In = (0, 1/n). Assume there exists c ∈⋂∞

n=1 In. Since c ∈ In for all n, c certainly lies in, for in-
stance, I17. Thus 0 < c < 1/17 and c is positive. Now,
by the Archimedean Property, there exist a natural num-
ber N such that 1/c < N . Then c > 1/N and c 6∈ IN ,
contradiction.


