MAT 319: HOMEWORK 6 DUE TUESDAY, MARCH 6

1. We say that a sequence (x_n) converges to A very well if there exists $k \in \mathbb{N}$ such that for any $\varepsilon > 0$, $|x_n - A| < \varepsilon$ for all $n \ge k$. (That is, the number k in the definition of limit does not depend on ε .) Describe all sequences that converge very well to A = 1 and prove your answer.

2. Let
$$x_n = (-1)^n \frac{n+1}{n^4+2}$$
 for $n = 1, 2, 3, ...$
(a) Find $k \in \mathbb{N}$ such that $|x_n| < \frac{1}{100}$ for all $n \ge k$. (You don't have to find the best possible k .)

(b) Prove that the sequence (x_n) converges to 0.

3. Consider the sequence (x_n) , where $x_n = \begin{cases} 1, & n = 1, 4, 7, \dots \\ 2, & n = 2, 5, 8, \dots \\ 3, & n = 3, 6, 9, \dots \end{cases}$

- (a) Prove that (x_n) does not converge to 2.
- (b) Prove that (x_n) does not converge to any $A \in \mathbb{R}$.