MAT 319: HOMEWORK 5
 DUE TUESDAY, FEBRUARY 27

1. Let $S=\left\{\left.\frac{1}{n}-\frac{1}{m} \right\rvert\, n, m \in \mathbb{N}\right\}$. Find $\inf S$, $\sup S$ (if they exist). Explain your answer.
2. Let functions $f, g:[0,1] \rightarrow \mathbb{R}$ be both bounded. Show that

$$
\sup _{x \in[0,1]}(f(x)+g(x)) \leq \sup _{x \in[0,1]} f(x)+\sup _{x \in[0,1]} g(x) .
$$

Give an example where $\sup _{x \in[0,1]}(f(x)+g(x))$ is not equal to $\sup _{x \in[0,1]} f(x)+\sup _{x \in[0,1]} g(x)$ (for some functions $\left.f, g\right)$.

What would be the corresponding inequality for infimums?
3. As usual, for a real number a we denote $V_{\varepsilon}(a)=\{x| | a-x \mid<\varepsilon\}$. Find

$$
\bigcap_{n \in \mathbb{N}} V_{1 / n}(a) .
$$

(Prove your answer using the Archimedean Property.)
4. Let $I_{n}=(-n,+\infty)$, $J_{n}=(-\infty,-n)$ for $n \in \mathbb{N}$. Find $\bigcap_{n \in \mathbb{N}} I_{n}$ and $\bigcap_{n \in \mathbb{N}} J_{n}$.
5. Find the binary representation of the following numbers:
(a) $2 / 3$
(b) 0.625

Explain how this relates to nested intervals.

