MAT 319: HOMEWORK 5 DUE TUESDAY, FEBRUARY 27

- **1.** Let $S = \{\frac{1}{n} \frac{1}{m} \mid n, m \in \mathbb{N}\}$. Find $\inf S$, $\sup S$ (if they exist). Explain your answer.
- **2.** Let functions $f, g: [0, 1] \to \mathbb{R}$ be both bounded. Show that

$$\sup_{x \in [0,1]} (f(x) + g(x)) \le \sup_{x \in [0,1]} f(x) + \sup_{x \in [0,1]} g(x).$$

Give an example where $\sup_{x\in[0,1]}(f(x)+g(x))$ is not equal to $\sup_{x\in[0,1]}f(x)+\sup_{x\in[0,1]}g(x)$ (for some functions f,g). What would be the corresponding inequality for infimums?

3. As usual, for a real number *a* we denote $V_{\varepsilon}(a) = \{x \mid |a-x| < \varepsilon\}$. Find

$$\bigcap_{n\in\mathbb{N}}V_{1/n}(a).$$

(Prove your answer using the Archimedean Property.)

- **4.** Let $I_n = (-n, +\infty)$, $J_n = (-\infty, -n)$ for $n \in \mathbb{N}$. Find $\bigcap_{n \in \mathbb{N}} I_n$ and $\bigcap_{n \in \mathbb{N}} J_n$.
- 5. Find the binary representation of the following numbers: (2) = 2/2
 - (a) 2/3
 - (b) 0.625

Explain how this relates to nested intervals.