MAT 319: HOMEWORK 10

DUE TUESDAY, APR 17

1. Suppose that a sequence $\left(x_{n}\right)$ diverges to $+\infty$.
(a) Show that $\left(x_{n}\right)$ has an increasing subsequence. (Do not use Theorem 3.4.7; rather, give a direct proof.)
(b) Prove that $\left(x_{n}\right)$ cannot have a decreasing subsequence.
2. (a) Find a $\delta>0$ such that $\left|x^{2}-9\right|<\frac{1}{10}$ whenever $|x-3|<\delta$. (You don't have to find the best possible δ, but you have to show that your δ works.)
(b) Using the $\epsilon-\delta$ definition, show that the function $f(x)=x^{2}$ is continuous at $x=3$.
3. Consider the function $f(x)$ defined by

$$
f(x)= \begin{cases}x & \text { if } x>0 \\ 3 & \text { if } x \leq 0\end{cases}
$$

(a) Using the $\epsilon-\delta$ definition of the limit, show that $\lim _{x \rightarrow 0} f(x) \neq 3$.
(b) Show that $\lim _{x \rightarrow 0} f(x)$ does not exist.
(Please do this question from scratch; do not use one-sided limits.)
4. Suppose that $\lim _{x \rightarrow c} f(x)=L$. Let $g(x)=5 f(x)$. Using the $\epsilon-\delta$ definition of the limit, show that $\lim _{x \rightarrow c} g(x)=5 L$.
5. (One-sided limits) Here's the definition.

We say that $\lim _{x \rightarrow c+} f(x)=L$ if for every $\epsilon>0$ there exists $\delta>0$ such that

$$
0<x-c<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

Similarly, $\lim _{x \rightarrow c-} f(x)=L$ if for every $\epsilon>0$ there exists $\delta>0$ such that

$$
0<c-x<\delta \Longrightarrow|f(x)-L|<\epsilon
$$

Using these definitions, show that $\lim f(x)=L$ if and only if $\lim _{x \rightarrow c+} f(x)=$ $\lim _{x \rightarrow c-} f(x)=L$. (More precisely, the limit exists and equals L if and only if both one-sided limits exist are equal L.) This is Theorem 4.3.3 in the book, but the book gives no proof.

