
HOMEWORK 8 SOLUTIONS

17.4 We wish to prove for any sequence (xn) → x0 contained in the domain
[0,∞), that lim

√
xn =

√
x0. But this is precisely the statement of example 5

in chapter 8, so we’re done.

17.7

(a) Let (xn) → x0 be a convergent sequence. Since constants can be factored
through limits, we have lim kxn = k limxn = kx0. This proves lim f(xn) =
f(x0), proving that f(x) = kx is continuous.

(b) We’ll use the reverse triangle inequality with the ε-δ definition. Let ε > 0
be given. By the reverse triangle inequality,

||x| − |y|| ≤ |x− y|,

so we may choose δ = ε.

(c) It has already been prove that composition of continuous functions is con-
tinuous. Therefore if f is a continuous function, then so are kf and |f |.

17.9

(a) Given ε, choose δ = min{1, ε/5}. Then if |x − 2| < δ, then |x − 2| < 1 so
|x+ 2| < 5. But we also know that |x− 2| < ε/5, so

|x2 − 4| ≤ |x− 2||x+ 2| < ε/5 · 5 = ε.

(b) Given ε, choose δ = ε2. Then if |x− 0| = |x| < δ,
√
|x| =

√
x = |

√
x| < ε.

(c) Given ε, choose δ = ε. Then if |x| < δ, |f(x)| ≤ |x| < δ = ε. Here we used
the fact that the | sin(x)| ≤ 1.

(d) First we factor |x3 − x30| ≤ |x − x0||x2 + xx0 + x20|. Now observe that for
any δ, if |x− x0| < δ then |x| ≤ |x0|+ |x− x0| < |x0|+ δ. Using this in the
factorization, we find that if |x− x0| < δ (which is still unspecified),

|x3 − x30| < δ|(|x0|+ δ)2 + (|x0|+ δ)x0 + x20|
≤ δ|δ2 + 3δ|x0|+ 3|x0|2|.

This shows that given any ε, we can choose δ = min{1, 1
1+3|x0|+3|x0|2 }.

1



17.10

(a) Consider xn = 1/n. Then xn → 0, but lim f(xn) = lim 1 = 1 6= 0 = f(0).

(b) Consider xn = 1/(π/2+2nπ). Then xn → 0, but lim g(xn) = 1 6= 0 = g(0).

(c) Consider xn = 1/n. Then xn → 0 but lim f(xn) = 1 6= 0 = f(0).

17.12

(a) Given any irrational number x, we wish to find a sequence of rational
numbers rn that converges to it. If this can be done, then the continuity
condition f(x) = lim f(rn) = 0 shows the desired result.

For each n, choose rn to be a rational number lying in the interval (x −
1/n, x+1/n). We know such a number exists by the denseness of rationals,
and then (rn)→ x by construction.

(b) Consider f − g. The difference of two continuous functions is continuous,
and by assumption this function equals 0 at every rational. By part (a),
the difference equals 0 everywhere, which proves that f = g everywhere.
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