
HOMEWORK 6 SOLUTIONS

14.4

(a) The series converges by the comparison test. Observe that 1
[n+(−1)n]2 ≤

1
(n−1)2 for all n. Using this comparison and then reindexing the sum, we
get

∞∑
n=2

1

[n+ (−1)n]2
≤
∞∑

n=2

1

(n− 1)2
=

∞∑
n=1

1

n2
<∞.

(b) The series diverges by definition. The N -th partial sum is given by

N∑
n=1

√
n+ 1−

√
n = (

√
N + 1−

√
N) + (

√
N −

√
N − 1) + · · ·+ (2− 1)

=
√
N + 1− 1,

which becomes arbitrarily large.

(c) The series converges by the ratio test. The ratio of successive terms is given
by

(n+1)!
(n+1)n+1

n!
nn

=
( n

n+ 1

)n
=
( n

n+ 1

)n+1

· n+ 1

n

=
(

1− 1

n+ 1

)n+1

· n+ 1

n
.

Using the fact that lim(1− 1/n)n = 1/e, we see that the limit of this ratio
is 1/e < 1.

1



15.6

(a) The series
∑

1/n diverges, but
∑

(1/n)2 =
∑

1/n2 converges.

(b) If
∑
an converges, the an → 0. Then there exists some index N such that

an < 1 for all n > N . Then we write

∑
a2n =

N∑
n=1

a2n +

∞∑
n=N+1

a2n

≤
N∑

n=1

a2n +

∞∑
n=N+1

an

≤
N∑

n=1

a2n +

∞∑
n=1

an.

The first sum contains finitely many terms, and therefore is finite, and the
second sum is finite by assumption. This proves that

∑
a2n converges.

1.

(a) Choose some r such that L < r < 1. Then by definition of convergence,
there exists some index N such that n

√
an ≤ r for all n > N . (Apply the

definition to ε = r − L. ) Then an ≤ rn, so we have

∑
an ≤

N∑
n=1

an +

∞∑
n=N+1

rn.

The first sum contains finitely many terms and therefore converges, and
the second sum is a geometric series with r < 1, which then also converges.
This proves

∑
an converges.

(b) Choose some r such that 1 < r < L. As before, take N such that n
√
an ≥ r

for all n > N . Then an ≥ rn, so we have

∑
an ≥

N∑
n=1

an +

∞∑
n=N+1

rn.

The second sum is a geometric series with r > 1, which diverges. This
proves

∑
an diverges.
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2.

(a) For all ε > 0, there exists N such that |an/bn − L| < ε for all n > N .
Equivalently, −ε < an/bn − L < ε, which after a bit of rearrangement
yields

bn(L− ε) < an < bn(L+ ε).

Then the comparison

∑
an ≤

N∑
n=1

an +

∞∑
n=N+1

bn(L+ ε) =

N∑
n=1

an + (L+ ε)

∞∑
n=N+1

bn

shows that
∑
an converges.

(b) We’ll use the other side of the inequality derived in part (a), bn(L−ε) < an.
Choosing ε so that L− ε > 0 (which is possible since L > 0), we can again
use the comparison test to see that

∑
an diverges.

(c) The condition L 6= 0 was used in part (b).

3.

(a) Since the square of any number is nonnegative, (
√
a−
√
b)2 ≥ 0. Expanding

the square and moving the mixed term to the other side, we get a + b ≥
2
√
ab ≥

√
ab. This proves the hint. Using this,∑√

anbn ≤
∑

an + bn =
∑

an +
∑

bn.

By the comparison test,
∑√

anbn converges.

(b) Since
∑
an converges, an → 0. Then there exists some N such that an < 1

for all n > N , so we have

∑
anbn =

N∑
n=1

anbn +

∞∑
n=N+1

anbn ≤
N∑

n=1

anbn +

∞∑
n=N+1

bn.

The sum
∑
anbn converges by the comparison test.

(c) No. Suppose the first two terms of each series are 1, and all the others are
0. Then

∑
an =

∑
bn =

∑
anbn = 2, but

∑
an ·

∑
bn = 4.
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