HOMEWORK 6 SOLUTIONS

14.4

(a) The series converges by the comparison test. Observe that $\frac{1}{[n+(-1)^n]^2} \leq \frac{1}{(n-1)^2}$ for all *n*. Using this comparison and then reindexing the sum, we get

$$\sum_{n=2}^{\infty} \frac{1}{[n+(-1)^n]^2} \le \sum_{n=2}^{\infty} \frac{1}{(n-1)^2} = \sum_{n=1}^{\infty} \frac{1}{n^2} < \infty.$$

(b) The series diverges by definition. The N-th partial sum is given by

$$\sum_{n=1}^{N} \sqrt{n+1} - \sqrt{n} = (\sqrt{N+1} - \sqrt{N}) + (\sqrt{N} - \sqrt{N-1}) + \dots + (2-1)$$
$$= \sqrt{N+1} - 1,$$

which becomes arbitrarily large.

(c) The series converges by the ratio test. The ratio of successive terms is given by

$$\frac{\frac{(n+1)!}{(n+1)^{n+1}}}{\frac{n!}{n^n}} = \left(\frac{n}{n+1}\right)^n \\ = \left(\frac{n}{n+1}\right)^{n+1} \cdot \frac{n+1}{n} \\ = \left(1 - \frac{1}{n+1}\right)^{n+1} \cdot \frac{n+1}{n}.$$

Using the fact that $\lim_{n \to \infty} (1 - 1/n)^n = 1/e$, we see that the limit of this ratio is 1/e < 1.

15.6

- (a) The series $\sum 1/n$ diverges, but $\sum (1/n)^2 = \sum 1/n^2$ converges.
- (b) If $\sum a_n$ converges, the $a_n \to 0$. Then there exists some index N such that $a_n < 1$ for all n > N. Then we write

$$\sum a_n^2 = \sum_{n=1}^N a_n^2 + \sum_{n=N+1}^\infty a_n^2$$
$$\leq \sum_{n=1}^N a_n^2 + \sum_{n=N+1}^\infty a_n$$
$$\leq \sum_{n=1}^N a_n^2 + \sum_{n=1}^\infty a_n.$$

The first sum contains finitely many terms, and therefore is finite, and the second sum is finite by assumption. This proves that $\sum a_n^2$ converges.

1.

(a) Choose some r such that L < r < 1. Then by definition of convergence, there exists some index N such that $\sqrt[n]{a_n} \leq r$ for all n > N. (Apply the definition to $\epsilon = r - L$.) Then $a_n \leq r^n$, so we have

$$\sum a_n \le \sum_{n=1}^N a_n + \sum_{n=N+1}^\infty r^n.$$

The first sum contains finitely many terms and therefore converges, and the second sum is a geometric series with r < 1, which then also converges. This proves $\sum a_n$ converges.

(b) Choose some r such that 1 < r < L. As before, take N such that $\sqrt[n]{a_n} \ge r$ for all n > N. Then $a_n \ge r^n$, so we have

$$\sum a_n \ge \sum_{n=1}^N a_n + \sum_{n=N+1}^\infty r^n.$$

The second sum is a geometric series with r > 1, which diverges. This proves $\sum a_n$ diverges.

(a) For all $\epsilon > 0$, there exists N such that $|a_n/b_n - L| < \epsilon$ for all n > N. Equivalently, $-\epsilon < a_n/b_n - L < \epsilon$, which after a bit of rearrangement yields

$$b_n(L-\epsilon) < a_n < b_n(L+\epsilon).$$

Then the comparison

$$\sum a_n \le \sum_{n=1}^N a_n + \sum_{n=N+1}^\infty b_n (L+\epsilon) = \sum_{n=1}^N a_n + (L+\epsilon) \sum_{n=N+1}^\infty b_n$$

shows that $\sum a_n$ converges.

- (b) We'll use the other side of the inequality derived in part (a), $b_n(L-\epsilon) < a_n$. Choosing ϵ so that $L - \epsilon > 0$ (which is possible since L > 0), we can again use the comparison test to see that $\sum a_n$ diverges.
- (c) The condition $L \neq 0$ was used in part (b).

3.

(a) Since the square of any number is nonnegative, $(\sqrt{a} - \sqrt{b})^2 \ge 0$. Expanding the square and moving the mixed term to the other side, we get $a + b \ge 2\sqrt{ab} \ge \sqrt{ab}$. This proves the hint. Using this,

$$\sum \sqrt{a_n b_n} \le \sum a_n + b_n = \sum a_n + \sum b_n.$$

By the comparison test, $\sum \sqrt{a_n b_n}$ converges.

(b) Since $\sum a_n$ converges, $a_n \to 0$. Then there exists some N such that $a_n < 1$ for all n > N, so we have

$$\sum a_n b_n = \sum_{n=1}^N a_n b_n + \sum_{n=N+1}^\infty a_n b_n \le \sum_{n=1}^N a_n b_n + \sum_{n=N+1}^\infty b_n.$$

The sum $\sum a_n b_n$ converges by the comparison test.

(c) No. Suppose the first two terms of each series are 1, and all the others are 0. Then $\sum a_n = \sum b_n = \sum a_n b_n = 2$, but $\sum a_n \cdot \sum b_n = 4$.

2.