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10.2 Let (sn) be a bounded decreasing sequence. Let S denote the set {sn :
n ∈ N}, and let u = inf S. Since S is bounded, u represents a real number.
We show lim sn = u. Let ε > 0. Since u + ε is not a lower bound for S, there
exists N such that sN < u + ε. Since (sn) is decreasing, we have sn ≤ sN for
all n ≥ N . Of course, sn ≥ u for all n, so n > N implies u ≤ sn < u+ ε, which
implies |sn − u| < ε. This shows lim sn = u.

10.5 Let (sn) be an unbounded decreasing sequence. Let M > 0. Since the
set {sn : n ∈ N} is unbounded and bounded above by s1, the set must be
unbounded below. Hence for some N ∈ N we have sN < M . Clearly n > N
implies sn ≤ sN < M , so lim sn = −∞.

10.10

(a) This is a straight-foward computation.
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(b) Part (a) verifies the base case, since all three values are greater than 1
2 .

Now assume that sn >
1
2 for some n. Then
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so sn+1 >
1
2 . This proves the inductive step. By the principle of mathe-

matical induction, the result is true for all n.
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(c) We will use the now-proven fact that sn >
1
2 .

sn >
1
2

2sn > 1

3sn > sn + 1

sn >
1
3 (sn + 1)

Note that we began with a known fact, namely that sn > 1
2 , and then

worked towards the desired result. In general, it is not sufficient to work
the other way. That is to say, you cannot begin with the desired result
and then derive something you know to be true, unless each step of the
derivation is reversible.

(d) Part (b) shows that (sn) is bounded below by 1
2 , and part (c) shows that

(sn) is bounded above by s1 = 1. Therefore (sn) is a bounded sequence.
Part (c) also shows that the sequence is monotone, so theorem 10.2 implies
that lim sn exists.

Since lim sn exists, we can define s = lim sn as some real number. From
the defining equation sn+1 = 1

3 (sn + 1), we take the limit of both sides to
get s = 1

3 (s+ 1). This yields s = 1
2 .

Note that the limit theorems do not explicitly state how to treat something
like lim(sn + 1). To be fully rigorous in the application of these theorems,
you could define the auxiliary sequence (tn) by tn = 1 for all n. Then
sn + 1 = sn + tn for all n, so

lim(sn + 1) = lim(sn + tn) = lim sn + lim tn = s+ 1.

You could also prove the limit directly, and either way is probably overkill.

11.4

(a) w2n, x2n, y2n, z8n.

(b) For wn, ±∞. For xn, 5 and 1
5 . For yn, 0 and 2. For zn, 0 and ±∞.

(d) None of the sequences converge or diverge to ±∞.

(e) wn, xn, yn are bounded. zn is unbounded.
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11.11 We may assume that supS 6∈ S, since otherwise the sequence (sn) de-
fined by sn = supS trivially satisfies the desired condition.

I will construct a sequence (sn) and then show lim sn = supS. For notational
convenience define s = supS, and choose s1 ∈ S such that s1 > s − 1. This is
possible since s − 1 < s = supS, so s − 1 is not an upper bound. Now choose
s2 ∈ S such that s2 > s1 and s2 > s− 1

2 . This is possible by the same reasoning
- both s1 and s − 1

2 are less than s and therefore cannot be upper bounds. In
general, we choose sn+1 to satisfy sn+1 > sn and sn+1 > s− 1

n+1 .

We now show that lim sn = s. Let ε > 0 be given. Then there exists some
N such that 1/N < ε. For all n > N , we have by the above construction
|s− sn| < 1/n < 1/N < ε. This proves that lim sn = s.

Additional problem. Let ε > 0 be given. If lim an = 5 then there exists a
constant Na such that n > Na implies |an−5| < ε/3. Similarly, since lim bn = 2,
there exists a constant Nb such that n > Nb implies |bn − 2| < ε/3. Now set
N = max{Na, Nb} so that we can control both bounds simultaneously. Then
using the triangle inequality,

|2an − bn − 8| = |2an − 10− bn + 2|
= |2(an − 5) + (2− bn)|
≤ |an − 5|+ |an − 5|+ |2− bn|
< ε/3 + ε/3 + ε/3

= ε.

This proves that lim
n→∞

2an − bn = 8.


