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Section 8

8.2 (a) lim
n

n2 + 1
= 0.

Proof: We know that lim 1/n = 0. Thus: ∀ε > 0,∃N ∈ N,∀n > N :

∣∣∣∣ 1n
∣∣∣∣ < ε.

But since
n

n2 + 1
<

n

n2
=

1

n
,∀n ∈ N, it follows that:

∀ε > 0,∃N ∈ N,∀n > N :

∣∣∣∣ n

n2 + 1

∣∣∣∣ =

∣∣∣∣ n

n2 + 1
− 0

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣ < ε

Therefore, the limit is indeed 0 by definition.

(b) lim
7n− 19

3n + 7
= 7/3.

Proof: Given ε > 0, then

∣∣∣∣7n− 19

3n + 7
− 7

3

∣∣∣∣ < ε if and only if

∣∣∣∣ −106

3(3n + 7)

∣∣∣∣ < ε.

Obviously, 3n + 7 > 0, whence

∣∣∣∣ −106

3(3n + 7)

∣∣∣∣ =
106

3(3n + 7)
. The rest of the proof

is quasi-identical to that of the Discussion of Example 2 in page 40 of the
textbook: “solve” for n, and then, knowing that the steps are reversible, restate
your proof adequately.

(c) lim
4n + 3

7n− 5
= 4/7.

Proof: Given ε > 0, then

∣∣∣∣4n + 3

7n− 5
− 4

7

∣∣∣∣ < ε if and only if

∣∣∣∣ 41

7(7n− 5)

∣∣∣∣ < ε. The

rest of the proof is quasi-identical to that of the Discussion of Example 2 in
page 40 of the textbook (cf. remark above).

(d) lim
2n + 4

5n + 2
= 2/5.

Proof: Same process as in (b) and (c).

(e) lim
sin(n)

n
= 0.

We know that lim 1/n = 0. Therefore: ∀ε > 0,∃N ∈ N,∀n > N :

∣∣∣∣ 1n
∣∣∣∣ < ε. But

since | sin(n)| ≤ 1,∀n ∈ N, it follows that:

∀ε > 0,∃N ∈ N,∀n > N :

∣∣∣∣ sin(n)

n

∣∣∣∣ =

∣∣∣∣ sin(n)

n
− 0

∣∣∣∣ ≤ ∣∣∣∣ 1n
∣∣∣∣ < ε
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Therefore, the limit is indeed 0 by definition.
(Note that (a) and (e) are handled similarly using estimates: that is, we com-
pare the given sequence to an already known sequence, and we conclude by
comparison. This will also be used in the last problem.)

8.4 Let (tn) be a bounded sequence and (sn) be such that lim sn = 0. As
we need to show that lim(sntn) = 0, we formally need to prove that given
ε > 0, there exists an N ∈ N such that |sntn| < ε for all n > N . Now as (tn) is
bounded, ∃M > 0 : |tn| ≤M,∀n ∈ N. Also, since lim sn = 0, then by definition:

∀ε > 0,∃N ∈ N,∀n > N : |sn| <
ε

M
. (Note that the usual ε in the definition

can be indeed chosen to be ε/M since ε is arbitrarily small.) Then, we can see
that given ε sufficiently small and n large enough, |sntn| < ε as follows:

∀ε > 0,∃N ∈ N,∀n > N : |sntn| = |sn||tn| ≤ |sn|M <
ε

M
M = ε

Therefore, lim(sntn) = 0 by definition.

8.6 (a)
lim sn = 0

if and only if
∀ε > 0,∃N ∈ N,∀n > N : |sn − 0| < ε

if and only if
∀ε > 0,∃N ∈ N,∀n > N : |sn| < ε

if and only if
∀ε > 0,∃N ∈ N,∀n > N : ||sn|| < ε

if and only if
∀ε > 0,∃N ∈ N,∀n > N : ||sn| − 0| < ε

if and only if
lim |sn| = 0

(b) It has already been shown in the textbook that for sn = (−1)n, (sn) does
not converge and so lim sn does not exist. However, note that |sn| = |(−1)n| = 1
and so lim |sn| exists and is equal to 1 as (|sn|) is just the constant sequence of
value 1 identically.

Section 9

9.2 Suppose limxn = 3 and lim yn = 7. Then, by the properties of limits:

lim(xn + yn) = limxn + lim yn = 3 + 7 = 10

(Note that this does not require the assumption that yn 6= 0,∀n ∈ N.)
Also, since all the yn are nonzero, then:

lim

(
3yn − xn

y2n

)
= lim

(
3
yn
y2n
− xn

y2n

)
= 3 lim

1

yn
− limxn

lim y2n
=

3

lim yn
− limxn

(lim yn)2
,

2



and so lim

(
3yn − xn

y2n

)
=

3

7
− 3

72
=

18

49
.

(Note that this time the assumption that yn 6= 0,∀n ∈ N is absolutely necessary
for otherwise the expression inside the limit would not be defined.)

9.4 Let s1 = 1 and sn+1 =
√
sn + 1 for n ≥ 1.

(a) s1 = 1, s2 =
√

1 + 1 =
√

2, s3 =
√√

2 + 1 and s4 =

√√√
2 + 1 + 1.

(b) Assuming sn converges, denote its limit by `. Then lim sn+1 = lim sn = `
as if n is large enough, so is n+ 1 or one would simply put m = n+ 1 and note
that m→∞ if and only if n→∞. Now given this, then since sn+1 =

√
sn + 1,

it follows that s2n+1 = sn + 1 and so, by taking the limit, `2 = ` + 1. This
equation can easily be solved using the quadratic formula and we can see that

either ` =
1 +
√

5

2
or ` =

1−
√

5

2
. However, we can actually prove that ` ≥ 1.

Indeed, s1 = 1 ≥ 1, and assuming that sn ≥ 1 for a fixed n ≥ 1, we obtain that
sn+1 =

√
sn + 1 ≥

√
1 + 1 > 1, and thus sn ≥ 1 for all n ∈ N, by induction. By

taking the limit, ` ≥ 1 since the inequality must also hold for n large enough.

Therefore, the second solution is dismissed and lim sn = ` =
1 +
√

5

2
.

9.6 Let x1 = 1 and xn+1 = 3x2
n for n ≥ 1.

(a) Let a = limxn. By the same reasoning as in 9.4 (b), then taking the limit in
the recurrence relation yields a = 3a2 so that 3a2−a = 0 and thus a(3a−1) = 0.

Therefore, a = 0 or 3a = 1; i.e., a = 0 or a =
1

3
.

(b) Notice that x2 = 3 and given the recurrence relation, once would expect xn

to be at least 3 for any n > 1 (since x1 = 1). The base case is verified, and for
a fixed n ≥ 2, if we assume that xn ≥ 3, then xn+1 = 3x2

n ≥ 3 × 32 > 3 which
shows (by induction) that xn ≥ 3 for any n > 1. But then, for n large enough,
this should also be true, and thus a ≥ 3 which contradicts the result achieved
in (a). Therefore, a doesn’t exist.
(c) The explanation here is that the sequence (xn) does in fact diverge to +∞, in
which case the assumption that the limit exists (and is thus finite) in part (a) is
invalid, and confirmed by the reasoning established in part (b). Note that since
xn ≥ 1 for all n ≥ 1 from the above, then x2

n ≥ xn for all n ≥ 1 and so xn+1 ≥
3xn for all n ≥ 1. But then, it can (easily) be seen (and proven inductively)
that xn ≥ 3n−1x1 = 3n−1 for any n ≥ 1. The base case is trivially verified, and
for a fixed n ≥ 1, it follows that xn+1 = 3x2

n ≥ 3× (3n−1)2 = 32n−1 ≥ 3n, which
proves the claim. Clearly, lim 3n−1 = +∞ as 3 > 1. Therefore, by definition,
for any M > 0, there exists an N ∈ N such that for any n > N , 3n−1 > M .
Then:

∀M > 0,∃N ∈ N,∀n > N : xn > M,

since xn ≥ 3n−1,∀n ≥ 1, and thus limxn = +∞ by definition.
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