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Therefore, the limit is indeed 0 by definition.
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Proof: Given ¢ > 0, then 37;4_7 — 3‘ < ¢ if and only if ‘3(3”4‘7)‘ < €.
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Obviously, 3n + 7 > 0, whence 3GBn+7) = 3Bn1T) The rest of the proof

is quasi-identical to that of the Discussion of Example 2 in page 40 of the
textbook: “solve” for n, and then, knowing that the steps are reversible, restate
your proof adequately.
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Proof: Given ¢ > 0, then

() lim = 4/7.
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rest of the proof is quasi-identical to that of the Discussion of Example 2 in
page 40 of the textbook (cf. remark above).
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d) lim —— = 2/5.
Proof: Same process as in (b) and (c).
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(e) lim =0.

We know that lim 1/n = 0. Therefore: Ve > 0,3N € N,Vn > N : ’1' < e. But
n
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since |sin(n)| < 1,Vn € N, it follows that:

e 03N eN,vn> N |0




Therefore, the limit is indeed 0 by definition.

(Note that (a) and (e) are handled similarly using estimates: that is, we com-
pare the given sequence to an already known sequence, and we conclude by
comparison. This will also be used in the last problem.)

8.4 Let (t,) be a bounded sequence and (s,) be such that lims, = 0. As
we need to show that lim(s,t,) = 0, we formally need to prove that given
€ > 0, there exists an N € N such that |s,t,| < € for all n > N. Now as (t,) is
bounded, IM > 0: [t,]| < M,¥n € N. Also, since lim s,, = 0, then by definition:

Ve > 0,dN € N,Vn > N : |s,] < % (Note that the usual € in the definition

can be indeed chosen to be /M since ¢ is arbitrarily small.) Then, we can see
that given e sufficiently small and n large enough, |s,t,| < € as follows:

Ve > 0,3N € N,Vn > N : |sntn] = |8nl[ta] < |80 M < %M —
Therefore, lim(s,t,) = 0 by definition.
8.6 (a)
lims,, =0

if and only if
Ve >0,AN e N,Vn> N : s, — 0| <e

if and only if
Ve >0,IN e NVn > N : |s,| <e

if and only if
Ve > 0,AN e N,Vn > N :|[sy]| < e

if and only if
Ve > 0,IN e N,Vn > N :||s,| — 0| < ¢

if and only if
lim|s,| =0

(b) Tt has already been shown in the textbook that for s, = (—=1)", (s,) does
not converge and so lim s,, does not exist. However, note that |s,| = [(—1)"] =1
and so lim |s,| exists and is equal to 1 as (|s,]|) is just the constant sequence of
value 1 identically.

Section 9

9.2 Suppose limz,, = 3 and limy,, = 7. Then, by the properties of limits:
lim(z, + yn) = limz, +limy, =3+ 7= 10

(Note that this does not require the assumption that y,, # 0,Vn € N.)
Also, since all the y,, are nonzero, then:

I 3Yn — T, i 3 Yn  Tnp 31; 1 lim x,, 3 lim z,,
im|{——— ) =lim(345 — — | =3lim— — = —
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(Note that this time the assumption that y,, # 0,Vn € N is absolutely necessary
for otherwise the expression inside the limit would not be defined.)

and so lim <3y";x") =
Yn

9.4 Let s31 =1 and sp,41 = /Sp + 1 forn > 1.
(a)s1=1,80=v1+1=+2,83=+v2+1and 54 = V2+1+1.

(b) Assuming s,, converges, denote its limit by ¢. Then lim s,,41 = lims, = ¢
as if n is large enough, so is n + 1 or one would simply put m = n 4+ 1 and note
that m — oo if and only if n — co. Now given this, then since s,,11 = v/sn, + 1,
it follows that S%H = 5, + 1 and so, by taking the limit, 2 = ¢ 4 1. This
equation can easily be solved using the quadratic formula and we can see that

1++5 1-5
2

either ¢ = or { = . However, we can actually prove that ¢ > 1.

Indeed, s; =1 > 1, and assuming that s, > 1 for a fixed n > 1, we obtain that
Sn+1 = VSn +1>+/141>1, and thus s, > 1 for all n € N, by induction. By

taking the limit, £ > 1 since the inequality must also hold for n large enough.

1++5

Therefore, the second solution is dismissed and lims,, = ¢ = 5

9.6 Let 1 = 1 and 2,41 = 322 for n > 1.
(a) Let @ = lim z,,. By the same reasoning as in 9.4 (b), then taking the limit in
the recurrence relation yields a = 3a? so that 3a? —a = 0 and thus a(3a—1) = 0.
Therefore, a =0 or 3a =1;ie.,a=0o0r a= 3
(b) Notice that zo = 3 and given the recurrence relation, once would expect x,,
to be at least 3 for any n > 1 (since 27 = 1). The base case is verified, and for
a fixed n > 2, if we assume that x,, > 3, then x,,1 = 322 > 3 x 3% > 3 which
shows (by induction) that x,, > 3 for any n > 1. But then, for n large enough,
this should also be true, and thus ¢ > 3 which contradicts the result achieved
in (a). Therefore, a doesn’t exist.
(c) The explanation here is that the sequence (x,,) does in fact diverge to +o00, in
which case the assumption that the limit exists (and is thus finite) in part (a) is
invalid, and confirmed by the reasoning established in part (b). Note that since
x, > 1 for all n > 1 from the above, then 2 > x,, for all n > 1 and s0 2,11 >
3z, for all n > 1. But then, it can (easily) be seen (and proven inductively)
that 2, > 3" '2z; = 3"! for any n > 1. The base case is trivially verified, and
for a fixed n > 1, it follows that 2,41 = 322 > 3 x (3"71)2 = 32"~1 > 3" which
proves the claim. Clearly, lim3" ! = +o00 as 3 > 1. Therefore, by definition,
for any M > 0, there exists an N € N such that for any n > N, 3"~ > M.
Then:

VM > 0,dN e NVvn > N :z, > M,

since x,, > 3", ¥n > 1, and thus limz,, = 400 by definition.



