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Section 1

1.2 We want to show that 3+ 11+...+ (8n—5) = 4n? —n for all n > 0. Let
P, be that proposition. Clearly, we simply apply the principle of mathematical
induction. You can check that the identity holds true forn = 1as3 = 4x12—1.
So P is true. Now for the induction step, suppose that P, is true for a fixed
n > 1 and let’s prove that P,y also holds true. We have the following;:

3+114...+(8(n+1)=5) = 3+11+.. .4+(8n—5)+(8(n+1)=5) = (4n*—n)+(8n+8—5)

The passage from the second step to the third step following, of course, from our
induction hypothesis. Now note that 4n? —n+8n+8—5 = 4n?+8n+4—-n—1=
4n?+2n+1) — (n+1) = 4(n +1)? — (n + 1), which shows that P, is also
true and the proof is thus complete by the principle of mathematical induction.

1.4 (a) Forn = 2, it’s 4 = 22. For n = 3, it’s 9 = 3%2. For n = 4, it’s 16 = 42
My guess would be that the sum is n? in general for a given n.

(b) Let’s prove the claim in (a) using the principle of mathematical induction.
Let P, be the proposition “3 + 11+ ...+ (2n — 1) = n? for all n € N”. As
the basis is already established (since P; is true), let us readily assume that P,
holds true for a fixed n > 1 and show that P, follows:

3+11+4...+(2(n+1)—1) = 3+11+...+(2n—1)+(2(n+1)—1) = n*+(2n+2-1)
As the last expression is simply n? + 2n + 1 = (n + 1)2, we are done.

1.7 Let P, be the proposition that 7 — 6n — 1 is divisible by 36 for all
positive n. We will prove the given proposition by induction. Pj is clearly true
since 7' — 6 x 1 — 1 = 0 is trivially divisible by 36. Now assume P,, holds for a
fixed n > 1. Then:

7 6(n+1)—1=7Tx7"—42n —7+36n="T7x (7" —6n — 1) + 36n

Now as 7" — 6n — 1 is divisible by 36 by our induction hypothesis and is 36n is
clearly divisible by 36, P, 1 holds true, and this completes the proof.

1.10 Induction, as usual. Note that the formula may be rewritten as follows:

(2n+1)+(2n+3)+ (2n+5) +...+ (2n+ (2n — 1)) = 3n?



Check that the formula holds for n = 1. Now call the proposition P, and prove
P,,+1 under the assumption that P, is true for all n > 1:

Cr+1)+D+2Rn+1)+3)+2n+1)+5)+...+2(n+1)+(2(n+1)—1))

= (2n+3)+(2n+5)+. . .+(2(n+1)+(2(n+1)—=5))+(2(n+1)+(2(n+1)—3))+(2(n+1)+(2(n+1)—-1))
=(2n+1)+2n+3)+2n+5)+...+ (2n+ (2n — 1)))—(2n+1)+(4n+1)+(4n+3)
=3n2+6n+3 = 3(n+1)2, hence P, holds true, and this completes the proof.

Section 2

2.2 The given numbers are roots of the polynomials 23 —2, 7 —5 and z* —13.
By the Rational Zeros Theorem, the only possible rational roots are: +1,+2 for
23 —2; £1,45 for 7 — 5; and +1, £13 for z* — 13.

Clearly, none of these are roots for the given polynomials, respectively. (Note
that you should still check that.) Hence, none of the given numbers are rational.

2.4 Let a = v/5—+/3. Then a® = 5 — /3, and so (5—-a®?—-3=0,ie.
a% —10a® + 22 = 0. Now if the polynomial 2% — 1023 + 22 has a rational root, it
must be one of the following numbers: +1, 42, +11, £22 by the Rational Zeros
Theorem. You can easily check that none of these are in fact roots of that poly-
nomial. (Note that you should still check that for all candidates.) For example,
1 wouldn’t work because when you evaluate the polynomial at 1 you obtain
16 —10 x 13 + 22 = 13.
An alternative approach would be to notice that if we assume that a € QQ, then
a® € Q as well so that b = 5 — a3 € Q and thus b is a rational root of 22 — 3,
which is impossible by the Rational Zeros Theorem since the only possible roots
would be £1, 43 and none of them is a root of 22 — 3.

Section 3

3.4 (v) By (iv) from Theorem 3.2, 0 < a? for all @ € R. Hence, 0 < 12 = 1.
Now since 1 # 0, it follows that 0 < 1. (Note that to show that 1 # 0, it suffices
to argue by contradiction: for any non-zero a, 0-a = 0 while 1-a = a and so if
1=0, then: 0#a=1-a=0-a =0, which is clearly absurd.)

(vii) Let a,b € R and suppose that 0 < a < b. Clearly, 0 < a and 0 < b
and so 0 < a=! and 0 < b~! by (vi) in Theorem 3.2. Now by O5, given
that 0 < a and a < b, it follows that aa™! < ba~';ie. 1 < ba~!. Similarly, we
have b=! < b~'ba=! =a"';ie. b~! < a™!, and since 0 < b!, the result follows.

3.6 (a) Let a, b, c € R, then by a double application of the triangle inequality:

la+b+c|=|(a+0b)+c] <|a+b|+|c] <|al + [b] + |c|

(b) Establishing the basis case has already been done before (cf. textbook,
for example). Now suppose that |a; +...+a,| < |ai|+. ..+ |ay| for n numbers
ai,...,a,. Let a,11 be another number. Then:

la1+. . Fant1] = [(a1+. . Aan)tanc1] < lar+. . Aan|+|ans1| < lag|+. . A an|+H|ans1]

Hence the result by the principle of mathematical induction.



