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Section 1

1.2 We want to show that 3 + 11 + . . .+ (8n−5) = 4n2−n for all n > 0. Let
Pn be that proposition. Clearly, we simply apply the principle of mathematical
induction. You can check that the identity holds true for n = 1 as 3 = 4×12−1.
So P1 is true. Now for the induction step, suppose that Pn is true for a fixed
n ≥ 1 and let’s prove that Pn+1 also holds true. We have the following:

3+11+...+(8(n+1)−5) = 3+11+. . .+(8n−5)+(8(n+1)−5) = (4n2−n)+(8n+8−5)

The passage from the second step to the third step following, of course, from our
induction hypothesis. Now note that 4n2−n+8n+8−5 = 4n2+8n+4−n−1 =
4(n2 + 2n + 1) − (n + 1) = 4(n + 1)2 − (n + 1), which shows that Pn+1 is also
true and the proof is thus complete by the principle of mathematical induction.

1.4 (a) For n = 2, it’s 4 = 22. For n = 3, it’s 9 = 32. For n = 4, it’s 16 = 42.
My guess would be that the sum is n2 in general for a given n.

(b) Let’s prove the claim in (a) using the principle of mathematical induction.
Let Pn be the proposition “3 + 11 + . . . + (2n − 1) = n2 for all n ∈ N”. As
the basis is already established (since P1 is true), let us readily assume that Pn

holds true for a fixed n ≥ 1 and show that Pn+1 follows:

3+11+. . .+(2(n+1)−1) = 3+11+. . .+(2n−1)+(2(n+1)−1) = n2+(2n+2−1)

As the last expression is simply n2 + 2n + 1 = (n + 1)2, we are done.

1.7 Let Pn be the proposition that 7n − 6n − 1 is divisible by 36 for all
positive n. We will prove the given proposition by induction. P1 is clearly true
since 71 − 6× 1− 1 = 0 is trivially divisible by 36. Now assume Pn holds for a
fixed n ≥ 1. Then:

7n+1 − 6(n + 1)− 1 = 7× 7n − 42n− 7 + 36n = 7× (7n − 6n− 1) + 36n

Now as 7n − 6n− 1 is divisible by 36 by our induction hypothesis and is 36n is
clearly divisible by 36, Pn+1 holds true, and this completes the proof.

1.10 Induction, as usual. Note that the formula may be rewritten as follows:

(2n + 1) + (2n + 3) + (2n + 5) + . . . + (2n + (2n− 1)) = 3n2
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Check that the formula holds for n = 1. Now call the proposition Pn and prove
Pn+1 under the assumption that Pn is true for all n ≥ 1:

(2(n+ 1) + 1) + (2(n+ 1) + 3) + (2(n+ 1) + 5) + . . .+ (2(n+ 1) + (2(n+ 1)− 1))

= (2n+3)+(2n+5)+. . .+(2(n+1)+(2(n+1)−5))+(2(n+1)+(2(n+1)−3))+(2(n+1)+(2(n+1)−1))

= ((2n + 1) + (2n + 3) + (2n + 5) + . . . + (2n + (2n− 1)))−(2n+1)+(4n+1)+(4n+3)

= 3n2+6n+3 = 3(n+1)2, hence Pn+1 holds true, and this completes the proof.

Section 2

2.2 The given numbers are roots of the polynomials x3−2, x7−5 and x4−13.
By the Rational Zeros Theorem, the only possible rational roots are: ±1,±2 for
x3 − 2; ±1,±5 for x7 − 5; and ±1,±13 for x4 − 13.
Clearly, none of these are roots for the given polynomials, respectively. (Note
that you should still check that.) Hence, none of the given numbers are rational.

2.4 Let a =
3
√

5−
√

3. Then a3 = 5 −
√

3, and so (5 − a3)2 − 3 = 0, i.e.
a6− 10a3 + 22 = 0. Now if the polynomial x6− 10x3 + 22 has a rational root, it
must be one of the following numbers: ±1,±2,±11,±22 by the Rational Zeros
Theorem. You can easily check that none of these are in fact roots of that poly-
nomial. (Note that you should still check that for all candidates.) For example,
1 wouldn’t work because when you evaluate the polynomial at 1 you obtain
16 − 10× 13 + 22 = 13.
An alternative approach would be to notice that if we assume that a ∈ Q, then
a3 ∈ Q as well so that b = 5 − a3 ∈ Q and thus b is a rational root of x2 − 3,
which is impossible by the Rational Zeros Theorem since the only possible roots
would be ±1,±3 and none of them is a root of x2 − 3.

Section 3

3.4 (v) By (iv) from Theorem 3.2, 0 ≤ a2 for all a ∈ R. Hence, 0 ≤ 12 = 1.
Now since 1 6= 0, it follows that 0 < 1. (Note that to show that 1 6= 0, it suffices
to argue by contradiction: for any non-zero a, 0 · a = 0 while 1 · a = a and so if
1 = 0, then: 0 6= a = 1 · a = 0 · a = 0, which is clearly absurd.)

(vii) Let a, b ∈ R and suppose that 0 < a < b. Clearly, 0 < a and 0 < b
and so 0 < a−1 and 0 < b−1 by (vi) in Theorem 3.2. Now by O5, given
that 0 < a and a < b, it follows that aa−1 < ba−1; i.e. 1 < ba−1. Similarly, we
have b−1 < b−1ba−1 = a−1; i.e. b−1 < a−1, and since 0 < b−1, the result follows.

3.6 (a) Let a, b, c ∈ R, then by a double application of the triangle inequality:

|a + b + c| = |(a + b) + c| ≤ |a + b|+ |c| ≤ |a|+ |b|+ |c|

(b) Establishing the basis case has already been done before (cf. textbook,
for example). Now suppose that |a1 + . . .+an| ≤ |a1|+ . . .+ |an| for n numbers
a1, . . . , an. Let an+1 be another number. Then:

|a1+. . .+an+1| = |(a1+. . .+an)+an+1| ≤ |a1+. . .+an|+|an+1| ≤ |a1|+. . .+|an|+|an+1|

Hence the result by the principle of mathematical induction.
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