
HOMEWORK 12 SOLUTIONS

29.2 Consider
cosx− cos y

x− y
.

By the mean value theorem, there exists some c ∈ (a, b) with cos′(c) equal to
the above expression. But cos′(c) = − sin(c), which has absolute value at most
1. Therefore the above expression has absolute value at least 1, which proves
the desired result.

29.7

(a) If f ′′(x) = 0 for all x ∈ I, then by corollary 29.4, f ′(x) = a for some
constant a. Now consider g(x) = f(x) − ax. Since g′(x) = f ′(x) − a = 0
for all x ∈ I, g(x) = b for some constant b. Therefore b = f(x) − ax, i.e.
f(x) = ax+ b.

(b) This is the same argument as above. If f ′′′(x) = 0 for all x ∈ I, then
f ′′(x) = a for some constant a. Consider g(x) = f ′(x)− ax. Then g′(x) =
f ′′(x)−a = 0, so g(x) = b for some constant b. This shows f ′(x)−ax−b = 0.
Now set h(x) = f(x) − ax2/2 − bx. Since h′(x) = f ′(x) − ax − b = 0, we
have h(x) = c for some constant c. This shows f(x) = ax2/2 + bx+ c.

29.8 The set-up for all 3 remaining parts is the same. Consider any x1, x2 with
a < x1 < x2 < b. By the mean value theorem, there exists some x ∈ (x1, x2)
such that

f ′(x) =
f(x1)− f(x2)

x1 − x2
.

(ii) f ′(x) < 0 and x1 < x2 imply that f(x1) > f(x2), so f is strictly decreas-
ing.

(iii) f ′(x) ≥ 0 and x1 < x2 imply that f(x1) ≤ f(x2), so f is increasing.

(iv) f ′(x) ≤ 0 and x1 < x2 imply that f(x1) ≥ f(x2), so f is decreasing.
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29.10

(a)

f ′(0) = lim
x→0

f(x)− f(0)

x− 0

= lim
x→0

x2 sin(1/x) + x/2

x

= lim
x→0

x sin(1/x) + 1/2.

Since the limits of both terms exist, and in particular limx→0 x sin(1/x) = 0
and limx→0 1/2 = 1/2, we can use the addition law to get that f ′(0) =
1/2 > 0 .

(b) By corollary 29.7 and assignment 11, a function f is increasing on some
interval if and only if f ′ ≥ 0 on that interval. Thus, it will suffice to show
that in any open interval containing 0, there exists some x with f ′(x) < 0.
First we compute the derivative using the product and chain rules.

f ′(x) = 2x sin(1/x)− cos(1/x) + 1/2.

Now consider yn = 1/2πn, n ∈ N. Note that f ′(yn) = −1/2 for all n, and
that any open interval containing 0 must contain some yn. This proves that
f cannot be increasing on any open interval containing 0.

(c) Although f ′(0) > 0, the derivative is not positive (or even nonnegative) in
any neighborhood of 0 so 29.7 does not apply. This is because the derivative
is not continuous at 0.

29.13 Consider the auxiliary function h(x) = f(x)− g(x). Then h(0) = 0 and
h′(x) ≤ 0 for all x ∈ R. By corollary 29.7 h is decreasing on R. In particular,
for any x ≥ 0 we have h(x) ≤ h(0) = 0. Then f(x)− g(x) ≤ 0, so f(x) ≤ g(x)
for all x ≥ 0.

29.14 This is an application of the previous problem. Let f1(x) = x, so
f1(0) = 0 = f(0) and f ′1(x) = 1 ≤ f ′(x). By the previous problem, x ≤ f(x)
for all x ≥ 0. Now let f2(x) = 2x, so f2(0) = 0 = f(0) and f(x) ≤ 2 = f ′2(x).
By the previous problem, f(x) ≤ 2x for all x ≥ 0.
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