MAT 319 Homework 11 due Wednesday, April 27

Question 1. This is a question about limits.

Fix $x_0 \in \mathbb{R}$, let (a, b) be an interval containing x_0 , and suppose that f(x) is defined for all $x \in (a, b)$, $x \neq x_0$. (a) Prove that if $f(x) \ge 0$ for all $x \in (a, b)$, $x \ne x_0$, then $\lim_{x \to x_0} f(x) \ge 0$.

(b) Prove that if $f(x) \leq 0$ for all $x \in (a, b)$, $x \neq x_0$, then $\lim_{x \to x_0} f(x) \leq 0$.

(c) Give an example of a function f_1 such that $f_1(x) > 0$ for all $x \in (a, b)$, $x \neq x_0$ but $\lim_{x \to x_0} f_1(x) = 0$, and also of function f_2 such that $f_2(x) < 0$ for all $x \in (a, b)$, $x \neq x_0$ but $\lim_{x \to x_0} f_2(x) = 0$.

Question 2. In class, we showed that if the function f increases on (a, b), then $f'(x) \ge 0$ for all $x \in (a, b)$. Use the same strategy to show that if f decreases on (a, b) then $f'(x) \le 0$ for all $x \in (a, b)$. Give an example of a function f that *strictly* decreases on (a, b) but $f'(x_0) = 0$ for some $x_0 \in (a, b)$. In this question, all functions we consider are assumed to be differentiable on their domain.

Please also do questions 28.2, 28.4, 28.8, 28.14.