
SERIES

OLGA PLAMENEVSKAYA

Abstract. Class notes for MAT319, Spring 2012. More material is given in the textbook
(section 14), but we took a few shortcuts in class to prove (simpler versions of) important
theorems.

A series is an infinite sum of the form a1 + a2 + a3 + a4 + . . . , often written as
∑∞

n=1 an
using “sigma-notation”. To make sense of the infinite summation, we look at the partial
sums

s1 = a1,

s2 = a1 + a2,

s3 = a1 + a2 + a3,

...

sn = a1 + a2 + a3 + · · ·+ an,

...

and consider their sequence (sn). If the sequence (sn) converges, we say that the series∑
an converges; the limit lim sn = A is then called the sum of the series. The sum of the

series is often very hard to find (or cannot be expressed as a nice number). In fact, a lot of
importnat numbers and functions in mathematics are defined to be the sum of a convergent
series. Our main goal will be to detect and prove convergence of series.

Important observation. Similarly to sequences, convergence/divergence of series de-
pends only on its “tail”. Changing finitely many terms in the beginning of the series will
not affect convergence (although it may change the sum of the series). Indeed, suppose we
replace (some of) the terms a1, a2, . . . aN by different terms a′1, a

′
2, . . . a

′
N . Let (sn) be the

sequence of partial sums for the series
∑
an, and (s′n) the partial sums of the new series

a′1 + a′2 + . . . a′N + aN+1 + . . . . Let S = (a′1 + a′2 + . . . a′N ) − (a1 + a2 + . . . aN ) be the
difference between the sum of the new and the old terms (for the terms that got changed).
Then whenever we are past all the affected terms, i.e. whenever n > N , we have that
s′n = S+ sn. By Limit Laws for sequences, it follows that (sn) and (s′n) converge or diverge
simultaneously; if the old series converges to the sum A, the new one will converge to S+A.

Theorem 1. If the series
∑
an converges, then an → 0. In other words, if the sequence

(an) does not converge to 0 (i.e. it diverges or converges to a non-zero limit), then the
series

∑
an diverges.

Proof. The two statements in the theorem are equivalent (hello MAT 200). We’ll prove
the first one. If

∑
an converges to A, the sequence of partial sums (sn) converges to A.

Consider the sequence (sn−1), where s0 can be defined to be 0, or just left undefined as
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“only tails matter”. Clearly, (sn−1) also converges to A (it’s essentially the same sequence
- why?). Then sn − sn−1 → A−A = 0 by Limit Laws. Since sn − sn−1 = an, we are done.

�

If
∑
an is a series with non-negative terms, i.e. an ≥ 0, more is true: if the terms an do

not converge to 0, then
∑
an = +∞. (This is a question in Homework 6).

By contrast, the converse is manifestly not true: if an → 0, it does not follow that the
series will converge. There are plenty of divergent series with terms an converging to 0
(harmonic series and p-series for p < 1 should be familiar from calculus).

Now we prove two tests that guarantee convergence of series, comparison test and ratio
test.

For the remainder of the notes, we consider series with non-negative terms
only, i.e. we assume an ≥ 0 for all n. Series

∑
an with non-negative terms is easier to

study, for the following reason. The partial sums sn of such series form an increasing (or at
least non-decreasing),

s1 ≤ s2 ≤ s3 . . . .
By the monotone convergence theorem, the sequence (sn) is guaranteed to converge once
we know that it is bounded. Thus, series with non-negative terms converge whenever their
partial sums are bounded. Additionally, we know that an increasing bounded sequence
converges to its supremum; thus in case of convergence, we have

∑
an = sup sn.

Theorem 2 (Comparison test). Suppose that
∑
an,

∑
bn are two series with non-negative

terms, and an ≤ bn for all n. Then if the series
∑
bn converges, the series

∑
an also

converges. In this case, if
∑
an = A,

∑
bn = B, then A ≤ B.

Proof. Let tn stand for partial sums of
∑
bn. Since

∑
bn converges, the sequence (tn) also

converges. Therefore, (tn) is bounded: there is an upper bound M s.t. tn ≤ M for all n.
Now, notice that because ak ≤ bk for all k, summing up we have that sn ≤ tn for partial
sums. But then sn ≤ tn ≤ M , the sequence (sn) is bounded, and therefore (because it’s
increasing!) converges.

For the second statement, we have
∑
bn = sup tn = B. Being its supremum, B is an upper

bound for tn; then the previous reasoning shows that sn ≤ tn ≤ B, and so A = sup sn ≤ B.
�

Note that non-negativity of terms is very important here, comparison test doesn’t work
otherwise.

To use the comparison test, it’s helpful to have a few “favorite” convergent series. In
particular, we often use the geometric series

∑
Cqn, which converges whenever 0 < q < 1.

(See example 1 on p. 91 in the book) Another useful series is the “telescoping” series∑∞
n=1

1
n(n+1) . The name is due to fact that the partial sum sn = 1

1·2 + . . . 1
n(n+1) collapses

“like a telescope”, and we get that sn = 1 − 1
n+1 if we write 1

k(k+1) = 1
k −

1
k+1 and cancel

terms in the resulting expansion. Clearly, then sn → 1, so the series converges to 1.
Now we will use comparison to prove (a special case of) the ratio test.

Theorem 3. (Ratio Test) Suppose
∑
an is a series with non-negative terms, such that

lim an+1

an
= L, and L < 1. Then the series converges.
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Proof. First, find a small neighborhood of L which is entirely to the left of 1, that is, take
ε > 0 such that L+ ε < 1. (This is possible because L < 1.) Set q = L+ ε, then q < 1. We
will establish convergence by comparing the tail of our series to a geometric series. Indeed,
since lim an+1

an
= L, there is (why?) some N -tail of the sequence where

an+1

an
< L+ ε = q whenever n > N.

Then, aN+2 < aN+1q, aN+3 < aN+2q < aN+1q
2, aN+4 < aN+3q < aN+1q

3, and so on. Then
the series aN+1 + aN+2 + aN+3 + . . . converges by comparison with the geometric series
aN+1(1 + q+ q2 + q3 + . . . ). Since we know that finitely many terms a1, . . . aN do not affect
convergence, the series

∑
an also converges.

�

More results (in particular,tests for divergence) are given in Homework 6.


