MAT 319, Spring 2012 Solutions to HW 9

1. Prove that a continuous function $f : [a, b] \to \mathbb{R}$ attains its minimum by examining -f. Proof: Since f is continuous on [a, b], so is -f. Therefore, by the theorem proved in class, -f attains its maximum value: there exists some $x_0 \in [a, b]$ such that

$$-f(x_0) \ge -f(x)$$
 for all $x \in [a, b]$.

Multiplying this by -1, we see that $f(x_0) \leq f(x)$ for all $x \in [a, b]$. Ergo, f achieves a minimum value at x_0 .

2. Prove that a continuous function $f : [a, b] \to \mathbb{R}$ attains its minimum by imitating the proof for the maximum:

Proof: The proof that f is bounded on [a, b] remains unchanged, so we know that $m := \inf \{f(x) | a \le x \le b\}$ exists. Since m is the greatest lower bound for this set, $m + \frac{1}{n}$ is not a lower bound for any n; in other words, for each $n \in N$, there exists $a \le x_n \le b$ such that

$$m \le f(x_n) < m + \frac{1}{n}.$$

It follows that the sequence of y-values $(f(x_n))$ converges to m. However, the sequence of x-values, (x_n) , is only bounded, and not necessarily convergent. But we can use the Bolzano-Weierstrass Theorem to extract a convergent subsequence (x_{n_k}) . Let us denote the limit of (x_{n_k}) by x_0 . Since each x_{n_k} is between a and b, $x_0 \in [a, b]$ as well. Therefore, $f(x_0)$ is defined, and by the continuity of f,

$$\lim \left(f(x_{n_k}) \right) = f(x_0)$$

However, $(f(x_{n_k}))$ is just a subsequence of $(f(x_n))$, and therefore,

 $\lim \left(f(x_{n_k}) \right) = m.$

Hence, $f(x_0) = m$, as desired. f achieves a minimum value.

(a) Assume f and g are continuous on [a, b], such that $f(a) \ge g(a)$ and $f(b) \le g(b)$. Show that there exists a point $x_0 \in [a, b]$ where $f(x_0) = g(x_0)$. Proof: Define $h: [a, b] \to \mathbb{R}$ by h(x) := f(x) - g(x). h is continuous on [a, b]. Furthermore,

$$\begin{aligned} h(a) &= f(a) - g(a) \ge 0, \\ h(b) &= f(b) - g(b) \le 0. \end{aligned}$$

So $h(a) \ge 0 \ge h(b)$, so we can apply the intermediate value theorem to find an $x_0 \in [a, b]$ satisfying $h(x_0) = 0$. Thus, $f(x_0) = g(x_0)$.

(b) Show that Example 1 in the text is a special case of part (a).
We take f defined on [0,1] as in the example, and g(x) = x. The fact that f(x) ∈ [0,1] for all x implies, in particular, that

$$\begin{array}{rcl} f(0) & \geq & 0 = g(0), \\ f(1) & \leq & 1 = g(1), \end{array}$$

and we are looking for a point x_0 where $f(x_0) = x_0 = g(x_0)$.

4. (18.6) Show that there exists a point $x_0 \in (0, 1)$ where $x_0 2^{x_0} = 1$. Proof: We will take for granted that $f(x) = x2^x$ is continuous. f(0) = 0, and f(1) = 2. Since f(0) < 1 < f(1), the intermediate value theorem asserts the existence of a point $x_0 \in (0, 1)$ such that $f(x_0) = 1$. 5. (18.7) Suppose that f is a real-valued continuous function on \mathbb{R} and that f(a)f(b) < 0 for some $a, b \in \mathbb{R}$. Prove that there exists x between a and b such that f(x) = 0. Proof: Since f(a)f(b) is negative, either f(a) < 0 < f(b) or f(b) < 0 < f(a). In either case, 0 is an intermediate value, and since f is continuous, we can apply the intermediate value theorem to find x between a and b such that f(x) = 0.