
MAT 319, Spring 2012
Solutions to HW 6

1. Let (xn) be a sequence of nonnegative terms, xn ≥ 0 for all n. Suppose that (xn) does not converge
to 0. Prove that one can always �nd a subsequence (xnk

) such that xnk
> ε for all terms in the

subsequence (ε may not be arbitrary here).
Proof: We must carefully negate the statement �(xn) → 0� to �nd an ε that we can work with.
�(xn) → 0� means that every neighborhood of 0 contains some tail of (xn). Therefore, if we say that
(xn) does NOT converge to 0, we are saying that there exists some ε-neighborhood of 0 that does not
contain ANY tail of (xn).
Let us pick an ε > 0 satisfying this. Since no tail of (xn) is contained in this ε-nbhd, we can surely
�nd at least 1 term, let's call it xn1

, outside this neighborhood: |xn1
| ≥ ε. Now that we have a �rst

term, we can proceed by induction. Let's do one more to see how the inductive step will go: To de�ne
xn2 , let's look at the n1-tail of (xn). Recall that by de�nition, this tail starts with the term AFTER
xn1

. This tail isn't contained in the ε-nbhd either, so we can �nd a term xn2
from this tail satisfying

|xn2
| ≥ ε. Since xn2

came from the n1 tail, we know that n2 > n1.
Inductive step: Suppose that xnk

is de�ned for some k. We need to de�ne xnk+1
. The nk-tail of (xn)

isn't contained in our ε-nbhd, so we can �nd a term, call it xnk+1
, from this tail satisfying

∣∣xnk+1

∣∣ ≥ ε.
It also follows that nk < nk+1.
Now we have inductively de�ned our subsequence (xn1

, xn2
, . . . , xnk

, . . .), and it is a well-de�ned sub-
sequence since n1 < n2 < · · · < nk < · · · . Furthermore, since all the terms are nonnegative, we know
that xnk

= |xnk
| ≥ ε. The conclusion now follows by keeping this same subsequence and shrinking ε

slightly to a smaller positive number, thereby making the inequality strict.

2. Suppose that a sequence (xn) is not bounded below. Prove that it has a subsequence diverging to −∞.
Give an example to show that the entire sequence may not diverge to −∞.
Proof: We will construct such a subsequence term by term. The idea is the following: We know that
the sequence (−k) diverges to −∞. Maybe we can �nd a subsequence such that xnk

< −k for all k.
By an exercise from a previous homework (3b in HW 4), this would imply the result. It seems like it
should be possible: since none of the numbers −k is a lower bound for the sequence, we can �nd some
term smaller than it. But we should be careful in writing it up.
Since −1 is not a lower bound, we can �nd a term, call it xn1

satisfying xn1
< −1. xn2

is trickier
to �nd because it must come from the n1-tail. We could try choosing it so that xn2

< −2, but this
doesn't guarantee that n1 < n2. In fact, even choosing xn2

< min {−2, xn1
} is not enough. We need

to choose
xn2 < min {−2, x1, x2, . . . , xn1} .

In this way, we can be assured that xn2 < −2, and also it is smaller than xn1 and all preceding terms.
Therefore, it must come from the n1-tail as desired.
Inductive step. Suppose now that xnk

is de�ned. Let mk+1 = min {− (k + 1) , x1, x2, . . . , xnk
}. mk+1

cannot be a lower bound for (xn), so we can �nd a term xnk+1
< mk+1. Since this implies that

xnk+1
is less than all term preceding xnk

, it must come from the nk-tail: nk < nk+1. Also, we have
xnk+1

< − (k + 1).
This recursive de�nition gives a well-de�ned subsequence (xnk

) satisfying xnk
< −k for all positive

integers k. Exercise 3b in HW 4 completes the proof.

As an example of a sequence that is not bounded below, and also does not diverge to −∞, look
at

xn =

{
−n if n is odd

0 if n is even.

The odd terms diverge to −∞, so this sequence is de�nitely not bounded below. However, the even
terms are all 0, so the entire sequence cannot diverge to −∞.

3. Suppose that
∑
an is a series with non-negative terms, an ≥ 0 for all n. Suppose that

∑
an does not

converge. Show that
∑
an diverges to +∞, that is, for any α there is an N such that sn > α for all
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partial sums sn with n > N .
Proof: We must show that the sequence of partial sums (sn) diverges to +∞. Notice �rst that this
sequence is non-decreasing. Indeed, for each n, sn+1−sn = an+1 ≥ 0, proving that sn ≤ sn+1 for all n.
If the sequence (sn) were bounded, then in must be convergent, because it is nondecreasing. However,
we know the sequence of partial sums diverges�this is what it means for a series to diverge. Therefore,
(sn) is unbounded and nondecreasing. Since s1 is a lower bound, (sn) must be unbounded above.
Let α > 0. Since α cannot be an upper bound, we can �nd some partial sum satisfying sN > α. Since
the sequence of partial sums is nondecreasing, the entire N -tail of partial sums must lie above α.

α < sN ≤ sN+1 ≤ sN+2 ≤ sN+3 ≤ · · · .

4. Suppose that
∑
an,

∑
bn are two series with nonnegative terms,

∑
bn diverges, and an ≥ bn. Prove

that
∑
an diverges.

Proof: Let (sn) be the sequence of partial sums for
∑
an, and (tn) the same for

∑
bn. Since

∑
bn is a

divergent series with nonnegative terms, we know that (tn) diverges to +∞ from the previous problem.
For any given n, we have:

sn =

n∑
k=1

ak ≥
n∑

k=1

bk = tn.

Therefore, by problem 3a on Homework 4, (sn) must diverge to +∞ as well. Therefore,
∑
an diverges.

5. Question 14.14:
Let us �rst examine the sequence (an)

∞
n=2 given in the book:

(an)
∞
n=2 =

(
1

2
,
1

4
,
1

4
,
1

8
,
1

8
,
1

8
,
1

8
,
1

16
,
1

16
,
1

16
,
1

16
,
1

16
,
1

16
,
1

16
,
1

16
, . . .

)
.

This sequence is de�ned as follows: for any n ≥ 2, there is some integer k such that

2k−1 < n ≤ 2k,

an is then de�ned to be 2−k. (By the way, this automatically shows that 1
n ≥ an, a fact that will be

useful later.) To examine the behavior of the series
∑
an, we look at the sequence of partial sums (sn).

Since all the terms an are positive, the sequence (sn) must be increasing. Let's look at some particular
partial sums:

s2 =

2∑
n=2

an =
1

2

s4 =

4∑
n=2

an =
1

2
+

1

4
+

1

4
=

2

2

s8 =

8∑
n=2

an =
1

2
+

2

4
+

4

8
=

3

2
.

In general, there are 2n−1 terms equal to 1
2n ; adding these up will contribute 1

2 . Therefore, s2n = n
2 .

Now it is easy to prove that (sn) diverges to +∞. Let α > 0. We must �nd a tail of (sn) contained
entirely in (α,+∞). To do this, choose an integer N > 2α so that s2N = N

2 > α. Now that we have 1
term greater than α, the fact that (sn) is an increasing sequence proves that an entire tail (the 2N -tail,
to be precise) is greater than α:

α < s2N < s2N+1 < s2N+2 < · · · .

Thus, (sn) diverges to +∞ as desired.

So far we have shown that
∑
an diverges to +∞. Also, we stated before that 1

n ≥ an. Therefore, by
problem 3 above,

∑
1
n diverges to +∞ as well.
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6. Suppose that lim an+1

an
= L, and L > 1. Prove that the series

∑
an diverges, assuming an > 0 for all n.

Since 1 < L, we claim that some tail of the sequence
(

an+1

an

)
is always greater than 1. To see this, let

ε = L− 1 > 0. We can �nd an integer N such that if n ≥ N , then L− ε < an+1

an
< L+ ε; in particular,

1 < an+1

an
. Therefore,

aN+1 > aN

aN+2 > aN+1 > aN

aN+3 > aN+2 > aN+1 > aN

and so on; i.e. aN+k > aN . As the N -tail is always greater than aN , a positive number, the sequence
of terms (an) cannot possibly converge to 0. Therefore, the divergence test implies

∑
an diverges.
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