MAT 319 Introduction to Analysis

Homework 5

due Thursday, March 1

Please prove (or explain as appropriate) all your answers.

Question 1. In class, we showed by induction that $2^n > n$ for every positive integer n. Using this, show that

(a) the sequence (2^n) diverges to $+\infty$

(b) the sequence $\left(\frac{1}{2^n}\right)$ converges to 0.

Question 2. Prove that $\sqrt{5}$ is irrational. (Do not refer to Theorem 2.2 from the book that we didn't cover. Give a proof from scratch.)

Question 3. Let (x_n) be an increasing sequence.

(a) Prove that (x_n) is bounded below.

(b) Suppose that (x_n) is not bounded above. Prove that x_n diverges to $+\infty$.

Question 4. (a) Prove that $1 \neq 0$.

Use the algebraic axioms A1-A4, M1-M4, DL on p. 13 as well as parts (i) and (ii) in Theorem 3.1. You can assume that the set \mathbb{R} of real numbers has more than one element. Please give a proof from scratch, justify every step, and do not use any of the statements not listed above.

(b) Prove that $0 \leq 1$.

Use only the axioms A1-A4, M1-M4, DL, O1-O5 on p.13, and (i) and (ii) in Theorem 3.1 if needed. Justify every step.

Please also do questions 4.6 and 4.7(a) from the textbook.