
MAT 319, Spring 2012
Solutions to HW 3

1. Find the following limits using limit laws. Explain carefully which theorems you used in each step.

(a) xn = 2n−1
3n+2 .

Multiplying and dividing xn by 1
n is a legitimate algebraic manipulation, so

xn =
2− 1

n

3 + 2
n

.

Since
(
1
n

)
converges to 0, Theorem 9.2 tells us that

(
− 1
n

)
and

(
2
n

)
converge to 0 as well, since

they are multiples of
(
1
n

)
. Theorem 9.3 tells us that if we add the constant sequence (2) to

(
− 1
n

)
,

we get the sequence
(
2− 1

n

)
, which must converge to 2 + 0 = 2. Similarly,

(
3 + 2

n

)
converges to

3. Finally, since
(
3 + 2

n

)
is never zero, and converges to a nonzero limit, we can apply Theorem

9.6 to arrive at the conclusion:

lim (xn) =
lim
(
2− 1

n

)
lim
(
3 + 2

n

) =
2

3
.

(b) xn = 7n3−n2+1
2n+5n3−3 .

Now, we miltiply and divide xn by 1
n3 :

xn =
7− 1

n + 1
n3

2
n2 + 5− 3

n3

.

Theorem 9.7(a) tells us that
(
1
n

)
,
(

1
n2

)
, and

(
1
n3

)
converge to 0. Theorem 9.2 now tells us

that
(
− 1
n

)
,
(

2
n2

)
, and

(
− 3
n3

)
all converge to 0. Two applications of theorem 9.3 shows that(

7− 1
n + 1

n3

)
converges to 7 and

(
2
n2 + 5− 3

n3

)
converges to 5. In order to apply Theorem 9.6,

we need to show that 2
n2 + 5 − 3

n3 = 1
n3

(
2n+ 5n3 − 3

)
is not 0 for any n; we already know it

converges to a nonzero limit. We see that 5n3 + 2n− 3 > 2n− 3 > 0 if n ≥ 2, and the n = 1 case
can be checked by hand. Therefore, 9.6 applies, and

lim (xn) =
7

5
.

(c) xn = n
n4+n3+n2−n+1 .

We multiply and divide xn by 1
n4

xn =
1
n3

1 + 1
n + 1

n2 − 1
n3 + 1

n4

.

According to Example 9.7(a),
(
1
n

)
,
(

1
n2

)
,
(

1
n3

)
,
(

1
n4

)
all converge to 0. Therefore, by 9.2 and

repeated applications of 9.3,

lim

(
1 +

1

n
+

1

n2
− 1

n3
+

1

n4

)
= 1 + 0 + 0 + 0 + 0 = 1.

Also, 1 + 1
n + 1

n2 − 1
n3 + 1

n4 is positive for all n. This is easy to see since 1− 1
n3 ≥ 0 and all other

terms are positive. Therefore, we can apply Theorem 9.6 to get

lim (xn) =
lim
(

1
n3

)
lim
(
1 + 1

n + 1
n2 − 1

n3 + 1
n4

) =
0

1
= 0.

2.
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(a) Suppose (xn) converges and (yn) does not. Prove that (xn + yn) diverges.
The easiest proof is probably the following: Assume for sake of contradiction that (xn + yn)
converges. Since (xn) converges, so does (−xn). Therefore, the limit sum theorem tells us that
(xn + yn)+(−xn) = (xn + yn − xn) converges. But this is just the sequence (yn), which we know
diverges. Contradiction.
A direct proof is much more di�cult; one approach uses the consequence of the triangle inequality
that we discussed in recitation: namely

|a− b| ≥ ||a| − |b|| .

In order to show that (xn + yn) diverges, we must demonstrate that no number L is a limit. To
that end, let A denote lim (xn). Since (yn) is divergent, there is an ε-neighborhood of L−A that
contains no tail of (yn). Let us take this ε, and use it to �nd a tail of (xn) that is contained in
the ε

2 -neighborhood of A. That is, for some number N , |A− xn| < ε
2 whenever n > N . But we

can �nd in�nitely many n > N such that |yn − (L−A)| > ε. Notice that for these values of n,

|yn − (L−A)| − |A− xn| > ε− ε

2
=
ε

2
> 0.

Thus,

|(xn + yn)− L| = |(yn − (L−A))− (A− xn)| ≥ ||yn − (L−A)| − |A− xn|| >
ε

2
.

Therefore, there is no tail of (xn + yn) contained on the ε/2-neighborhood of L. So L is not the
limit. As L is arbitrary, (xn + yn) has no limit; it diverges.

(b) Suppose both the sequences (xn) and (yn) diverge. It is possible that (xn + yn) converges. Here
are three such examples:

i. Suppose xn = n and yn = −n. Then (xn + yn) is the constant 0 sequence. So it converges to
0.

ii. This example demonstrates that xn and yn do not have to tend toward ±∞ as in the last
example.
Let (xn) = 1, 0, 1, 0, 1, 0, 1, 0, . . . and let (yn) = 0, 1, 0, 1, 0, 1, 0, 1, . . .. Both (xn) and (yn)
diverge (see problem #5 of last week's homework), but (xn + yn) is the constant sequence 1.

iii. Finally, here is an example that might seem less arti�cial: Let xn = 1+ 1
2 + · · ·+

1
n =

∑n
k=1

1
k

and let yn = − 1
2 −

1
3 − · · · −

1
n+1 = −

∑n
k=1

1
k+1 . We have not shown that (xn) and (yn)

diverge yet, but it is true. However

xn + yn =

n∑
k=1

1

k
− 1

k + 1
= 1− 1

n+ 1
,

so that (xn + yn) converges to 1. This is the prototypical example of a �telescoping series,�
which you learned about in calculus. Most of the telescoping series you encountered were the
di�erence of two diverging series.

3. Suppose that (xn) converges to 4. Show that (xn) is ultimately nonnegative, so that for su�ciently
large n,

√
xn is de�ned. Prove that

(√
xn
)
converges to 2.

Idea: We know that (xn) converges to 4, so by looking at su�ciently large tails, we can make the
distance between xn and 4 as small as we like. In order to make sure that xn is positive, xn must be
closer to 4 than 0 is to 4. Thus, we want a tail that ensures |xn − 4| < |0− 4| = 4.
Proof: Let N be large enough so that if n > N , then |xn − 4| < 4. Therefore, assuming n > N , we can
conclude that −4 < xn − 4 < 4 and hence 0 < xn < 8. In particular, xn must be positive. Therefore,
if n > N ,

√
xn is de�ned.

To show that
√
xn converges to 2, we use the identity:

|
√
xn − 2| =

∣∣∣∣ xn − 4
√
xn + 2

∣∣∣∣ .
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Since the denominator is always positive, and in fact, always greater than 1, we can conclude

|
√
xn − 2| < |xn − 4| .

Let ε > 0. We can �nd a tail starting at M such that if n > M , then |xn − 4| < ε. Therefore, if n is
larger than both N and M , (so n > max (M,N)), then

|
√
xn − 2| < |xn − 4| < ε.

4.

(a) Suppose that the sequence (xn) converges to A, the sequence (yn) converges to B, and xn ≤ yn
for all n. Prove that A ≤ B.
The easiest way to prove this is by contradiction. There is also a more direct proof, but it is much
more di�cult to grasp.

i. Contradiction Proof: Suppose B < A. We must �nd a speci�c n such that yn < xn. In order
to do this, set ε = A−B

2 > 0. We pick ε this way so that the ε-neighborhoods around A and B
are disjoint. Smaller values of ε would work just as well. There is a tail of (xn) that is in the
ε-neighborhood around A, and a tail of (yn) that is in the ε-neighborhood around B. Pick n
large enough so that xn and yn are both in their corresponding tail. Then A−ε < xn < A+ε,
and B − ε < yn < B + ε. Therefore,

yn < B + ε =
A+B

2
= A− ε < xn,

and we have our contradiction. If you picked ε smaller than A−B
2 , then you would have found

yn < B + ε < A− ε < xn.

ii. Direct proof: In this proof, we will show that A < B + ε for any positive ε, and thus, A
must be less than or equal to B. To this end, let ε > 0 be arbitrary. We can �nd a tail
of (xn) inside the ε

2 -neighborhood of A and a tail of (yn) inside the ε
2 -neighborhood of B.

Choose n large enough so that xn and yn both belong to their corresponding tail. Then
A− ε

2 < xn ≤ yn < B + ε
2 . So that A < B + ε.

(b) Suppose that, as in part (a), xn → A and yn → B, but now xn < yn for every n. Give an example
showing that A = B is still possible.
One easy example is the following: Let xn = − 1

n and let yn = 1
n . Then xn < 0 < yn for every n,

and both sequences converge to 0.
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