MAT 319, Spring 2012
Solutions to HW 3

1. Find the following limits using limit laws. Explain carefully which theorems you used in each step.

(a)

2n—1
Snt2-
Multiplying and dividing x,, by % is a legitimate algebraic manipulation, so
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Since (1) converges to 0, Theorem 9.2 tells us that (—1) and (2) converge to 0 as well, since

they are multiples of (1). Theorem 9.3 tells us that if we add the constant sequence (2) to (—+),
we get the sequence (2 — 1), which must converge to 2+ 0 = 2. Similarly, (3 + 2) converges to
3. Finally, since (3 + %) is never zero, and converges to a nonzero limit, we can apply Theorem
9.6 to arrive at the conclusion:
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Now, we miltiply and divide z,, by -5:
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Theorem 9.7(a) tells us that (1),(-%), and (-5) converge to 0. Theorem 9.2 now tells us

n? n3
that (—1), (%), and (—-%) all converge to 0. Two applications of theorem 9.3 shows that
(7— 2 + ) converges to 7 and (% + 5 — %) converges to 5. In order to apply Theorem 9.6,
we need to show that % + 5 — 2 = 25 (2n 4 5n® — 3) is not 0 for any n; we already know it
converges to a nonzero limit. We see that 5n +2n —3 > 2n —3 > 0 if n > 2, and the n = 1 case

can be checked by hand. Therefore, 9.6 applies, and
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We multiply and divide z,, by %
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According to Example 9.7(a), (%) , (n—lz) , (%) , (%) all converge to 0. Therefore, by 9.2 and
repeated applications of 9.3,
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Also, 1+ 1 + 4 — L 4 L is positive for all n. This is easy to see since 1 — - > 0 and all other
terms are positive. Therefore, we can apply Theorem 9.6 to get
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(a) Suppose (x,) converges and (y,) does not. Prove that (z, + y,) diverges.
The easiest proof is probably the following: Assume for sake of contradiction that (z, + yn)
converges. Since (x,) converges, so does (—z,). Therefore, the limit sum theorem tells us that
(n + yn) + (—zn) = (xn + yn — xy,) converges. But this is just the sequence (y,,), which we know
diverges. Contradiction.
A direct proof is much more difficult; one approach uses the consequence of the triangle inequality
that we discussed in recitation: namely

la —b] > |laf = [b]].

In order to show that (x, + y,) diverges, we must demonstrate that no number L is a limit. To
that end, let A denote lim (x,,). Since (y,) is divergent, there is an e-neighborhood of L — A that
contains no tail of (y,). Let us take this €, and use it to find a tail of (z,) that is contained in
the §-neighborhood of A. That is, for some number N, |A — 2,| < § whenever n > N. But we
can find infinitely many n > N such that |y, — (L — A)| > €. Notice that for these values of n,

|yn—(L—A)|—|A—xn|>e—§=§>0.

Thus,
[(@n +yn) = LI = [(yn — (L = A)) = (A= z0)| 2 [lyn — (L = A)| = [A — 20| > %

Therefore, there is no tail of (2, + y,) contained on the e¢/2-neighborhood of L. So L is not the
limit. As L is arbitrary, (z, + y,) has no limit; it diverges.

(b) Suppose both the sequences (z,) and (y,) diverge. It is possible that (z, + y,) converges. Here
are three such examples:

i. Suppose z,, = n and y, = —n. Then (z,, + y,,) is the constant 0 sequence. So it converges to
0.

ii. This example demonstrates that =, and y, do not have to tend toward +oco as in the last
example.

Let (z,) = 1,0,1,0,1,0,1,0,... and let (y,) = 0,1,0,1,0,1,0,1,.... Both (z,) and (y,)
diverge (see problem #35 of last week’s homework), but (x,, + v, ) is the constant sequence 1.

iii. Finally, here is an example that might seem less artificial: Let x, = 1+ % + .- —1—% = %
and let y, = -2 — 2 — -+ — =5 = =Y n_1 71- We have not shown that (z,) and (y,)
diverge yet, but it is true. However
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so that (2, + y,) converges to 1. This is the prototypical example of a “telescoping series,”
which you learned about in calculus. Most of the telescoping series you encountered were the
difference of two diverging series.

3. Suppose that (x,) converges to 4. Show that (z,) is ultimately nonnegative, so that for sufficiently
large n, \/x, is defined. Prove that (\/ﬂ) converges to 2.
Idea: We know that (x,) converges to 4, so by looking at sufficiently large tails, we can make the
distance between z,, and 4 as small as we like. In order to make sure that x,, is positive, x,, must be
closer to 4 than 0 is to 4. Thus, we want a tail that ensures |z, — 4| < |0 — 4] = 4.
Proof: Let N be large enough so that if n > N, then |z, — 4] < 4. Therefore, assuming n > N, we can
conclude that —4 < x,, — 4 < 4 and hence 0 < x,, < 8. In particular, x,, must be positive. Therefore,
if n > N, \/x, is defined.
To show that /z, converges to 2, we use the identity:

|\/In, — 2| =

T, —4
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Since the denominator is always positive, and in fact, always greater than 1, we can conclude

|vVZn — 2] < |z, —4].

Let € > 0. We can find a tail starting at M such that if n > M, then |z, — 4| < e. Therefore, if n is
larger than both N and M, (so n > max (M, N)), then

IVan, — 2| < |z, —4]| <e.

(a) Suppose that the sequence (x,) converges to A, the sequence (y,) converges to B, and z,, < y,
for all n. Prove that A < B.
The easiest way to prove this is by contradiction. There is also a more direct proof, but it is much
more difficult to grasp.

i. Contradiction Proof: Suppose B < A. We must find a specific n such that y,, < x,,. In order
to do this, set € = A_TB > 0. We pick e this way so that the e-neighborhoods around A and B
are disjoint. Smaller values of € would work just as well. There is a tail of (z,,) that is in the
e-neighborhood around A, and a tail of (y,,) that is in the e-neighborhood around B. Pick n
large enough so that x,, and y,, are both in their corresponding tail. Then A—e < x,, < A+,
and B — € < y, < B + €. Therefore,

A+ B
UYn < B+e= +

=A—e<zy,,

and we have our contradiction. If you picked e smaller than A’TB, then you would have found
Yn < B+e<A—e<ua,.

ii. Direct proof: In this proof, we will show that A < B + ¢ for any positive ¢, and thus, A
must be less than or equal to B. To this end, let ¢ > 0 be arbitrary. We can find a tail
of (z,) inside the §$-neighborhood of A and a tail of (y,) inside the §-neighborhood of B.
Choose n large enough so that x, and y, both belong to their corresponding tail. Then
A—5<w, <y, <B+5. Sothat A< B +e.

(b) Suppose that, as in part (a), z, — A and y,, — B, but now z,, < y,, for every n. Give an example
showing that A = B is still possible.
One easy example is the following: Let x,, = —% and let y,, = % Then z,, < 0 < y, for every n,
and both sequences converge to 0.



