
MAT 319, Spring 2012
Solutions to Midterm 1

1. Suppose that the sequence xn is bounded and the sequence yn diverges to +∞.

(a) Show that there is some N such that yn 6= 0 for every n > N ,
yn diverges to +∞, so by de�nition, for every α, there exists an N such that if n > N , then
yn > α. In particular, we can take α = 0: there exists some number N such that for all n > N ,
yn > 0. Thus, also yn 6= 0 for n > N .

(b) Prove that the sequence
(
xn

yn

)
converges to 0.

(xn) is bounded, so there exists some number M > 0 such that |xn| < M for all n. Let ε > 0.
Since yn diverges to +∞, we can �nd N such that if n > N , then yn >

M
ε . Therefore, for n > N ,∣∣∣∣xnyn

∣∣∣∣ < M

M/ε
= ε.

Hence, (xn/yn) converges to 0, as desired.

2. Let (xn) be a sequence such that xn > 0 for all n. Suppose that (xn) converges to 0.

(a) What is inf (xn)? Prove your answer.
inf (xn) = 0. First, since xn > 0 for all n, 0 is indeed a lower bound. We must show it is a
greatest lower bound. Let ε > 0 be arbitrary. We will show that ε is not a lower bound. Since xn
converges to 0, we can �nd a number N such that if n > N , then |xn| < ε. In particular, we must
have xn < ε for all n > N . Therefore, ε is not a lower bound, and 0 is the greatest lower bound.

(b) Prove that (xn) cannot have an increasing subsequence.
Suppose that (xnk

) were an increasing subsequence. Since (xn) converges to 0, (xnk
)must converge

to 0, as well. xn1
is positive, so (treating it as ε) we can �nd K such that if k > K, then

xnk
= |xnk

| < xn1
. But xn1

≤ xnk
for all k since the subsequence is increasing. Contradiction.

Therefore, (xn) is not an increasing subsequence.

3. Let
∑
an be a series with all positive terms, an > 0 for all n.

(a) Suppose that

n
√
an <

1

2
for every n.

Prove that
∑
an converges.

We have that 0 < an <
(
1
2

)n
for all n.

∑(
1
2

)n
is a convergent geometric series; therefore, by the

comparison test,
∑
an converges as well.

(b) Suppose that

lim n
√
an =

1

4
.

Prove that
∑
an converges.

Since n
√
an converges to 1

4 < 1
2 , there exists some N such that if n > N , then n

√
an <

1
2 . For

n > N , we have 0 < an <
(
1
2

)n
, and therefore, by the comparison test,

∞∑
n=N+1

an ≤
∞∑

n=N+1

(
1

2

)n
converges. (The right-hand sum is a convergent geometric series.) Thus,

∞∑
n=1

an =

N∑
n=1

an +

∞∑
n=N+1

an

converges, since we are only adding on �nitely many terms to a convergent series.
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4. Determine whether the following sequences converge or diverge. In case of convergence, �nd the limit.

(a)
n− 1√

n4 + n+ 1
.

Since n ≥ 1, we can divide the top and bottom by n2 to get the equivalent expression:

1
n −

1
n2√

1 + 1
n3 + 1

n4

.

Since 1
n → 0, the limit product formula implies that 1

nk → 0 for any k ∈ N. Then the limit sum
and di�erence rules tell us that

1

n
− 1

n2
→ 0

and

1 +
1

n3
+

1

n4
→ 1.

By the limit root formula, √
1 +

1

n3
+

1

n4
→ 1.

Since the denominator of the overall expression does not tend to 0, we can apply the limit quotient
formula to get

1
n −

1
n2√

1 + 1
n3 + 1

n4

→ 0

1
= 0.

(b)
(−1)n n
n+ 1

.

This sequence diverges. Take the subsequence of even terms (x2k) =
2k

2k+1 =
1

1 + (2k)
−1 . (2k)

−1 →

0 as k →∞, so using the arithmetic limit laws, x2k → 1.

Similarly, look at the subsequence of odd terms (x2k−1) = −(2k−1)
(2k−1)+1 =

−1
1 + (2k − 1)

−1 . This

converges to −1 as k →∞. (Students should �ll in the details of these claims.)
Therefore, we have found two subsequences that converge to di�erent limits. Thus, the sequence
cannot converge.

2


