
MAT 311 Introduction to Number Theory

Problem Set 4

Some Solutions

Problem 1. Solve the following systems of congruences.

(a) x ≡ 3 mod 5 (b) 13x ≡ 2 mod 15 (c) x ≡ 0 mod 18
x ≡ 2 mod 8 16x ≡ 3 mod 25 3x ≡ 12 mod 20
x ≡ 0 mod 7 2x ≡ −2 mod 30

Solution. (a) All moduli are pairwise relatively prime, so by the Chinese remainder
theorem the system has a unique solution mod 5 · 8 · 7 = 280. From the last congruence,
x = 7k, then from the first two we get 2k ≡ 3 mod 5 and −k ≡ 2 mod 8. The first
of these is equivalent to k ≡ 4 mod 5. To solve k ≡ 4 mod 5 and k ≡ −2 mod 8, we
can guess k = 14 or follow the strategy from the Chinese remainder theorem: find a, b

such that 8a ≡ 1 mod 5 and 5b ≡ 1 mod 8. We can take a = 2 and b = 5. Then
k = 4 · 8 · a + (−2) · 5 · b = 64 − 50 = 14 is a solution. Then x = 7 · 14 = 98 is a solution,
and all solutions are given by 98 + 280m, m integer. (Many other solutions are possible.)

(b) 13x ≡ 2 mod 15 implies 13x ≡ 3x ≡ 2 mod 5; 16x ≡ 3 mod 25 implies 16x ≡ x ≡ 3
mod 5. But if x ≡ 3 mod 5, then 3x ≡ 9 ≡ 4 mod 5, which contradicts 3x ≡ 2 mod 5,
so there are no solutions.
Similarly, in (c) x ≡ 0 mod 18 implies 3|x which contradicts 2x ≡ −2 mod 30. No
solutions either.

Problem 2. Prove that 7|(32n+1 + 2n+2) for all n.

Solution. 32n+1 + 2n+2 = 3 · (32)n + 4 · 2n ≡ 3 · 2n + 4 · 2n ≡ 7 · 2n ≡ 0 mod 7.

Problem 3. For what n is φ(n) odd?

Solution. Only for n = 2. Indeed, if n = p
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i is even and φ(n) is even. If n = 2m, φ(n) is also even unless m = 1.

Problem 4. Prove that

(p − 1)! ≡ p − 1 mod (1 + 2 + 3 + · · · + (p − 1)) if p is prime.

Solution. Assume p > 2, as the case p = 2 is trivial. We have 1+2+3+· · ·+(p−1) = p
p−1
2 .

(The sum of all integers from 1 to n is n(n+1)
2 . You can prove this by induction or by adding

numbers in pairs, 1+n, 2+(n−1), etc.) Note that since p > 2 is prime, p−1
2 is an integer.

Besides, p and p−1
2 are relatively prime. Then the congruence p−1)! ≡ p−1 mod p

p−1
2 is

equivalent to the system of two congruences, (p− 1)! ≡ p− 1 mod p and (p− 1)! ≡ p− 1

mod p−1
2 . The first one follows from Wilson’s theorem ((p−1)! ≡ −1 mod p); the second,

(p − 1)! ≡ p − 1 ≡ 0 mod p−1
2 , holds because p − 1 divides (p − 1)!



Problem 5. (a) Find the last digit of 21000 and the last digit of 31000.

Solution. For this, it suffices to look at last digits of 21 = 2, 22 = 4, 23 = 8, 24 = 16,
25 = 32, 26 = 64... and notice that the last digit will repeat cyclically in the pattern
2, 4, 8, 6, 2, 4, 8, 6..... Because 4|1000, the last digit of 21000 will be 6. Similarly, for powers
of 3 we have 31 = 3, 32 = 9, 33 = 27, 34 = 81, 35 = ..3, so the cyclical pattern is
3, 9, 7, 1, 3, 9, 7, 1, 3.., and the last digit of 31000 is 1.

(b) Find the last two digits of 31000.

Solution. The last two digits are given by 31000 mod 100. Since 3 and 100 are relatively
prime, Euler’s theorem applies, so 3φ(100) ≡ 1 mod 100. Compute φ(100) = φ(22)φ(52) =
(4 − 2)(25 − 5) = 40. So 340 ≡ 1 mod 100, and then 31000 ≡ (340)25 ≡ 125 ≡ 1 mod 100,
so the last two digits are 01.
(c) Find the last two digits of 21000.

Solution. Since 2 and 100 are not relatively prime, Euler’s theorem with φ(100) won’t
apply. However, we can argue that 2φ(25) = 220 ≡ 1 mod 25, so 21000 ≡ (220)50 ≡ 1
mod 25. This gives 4 possibilities for the last 2 digits: 01, 26, 51, 76. Since we also know
that 4|21000, the last two digits must be 76.


