Problem Set 4

Some Solutions

Problem 1. Solve the following systems of congruences.

(a) $x \equiv 3 \mod 5$	(b) $13x \equiv 2 \mod 15$	(c) $x \equiv 0 \mod 18$
$x \equiv 2 \mod 8$	$16x \equiv 3 \mod 25$	$3x \equiv 12 \mod 20$
$x \equiv 0 \mod 7$		$2x \equiv -2 \mod 30$

Solution. (a) All moduli are pairwise relatively prime, so by the Chinese remainder theorem the system has a unique solution $\mod 5 \cdot 8 \cdot 7 = 280$. From the last congruence, x = 7k, then from the first two we get $2k \equiv 3 \mod 5$ and $-k \equiv 2 \mod 8$. The first of these is equivalent to $k \equiv 4 \mod 5$. To solve $k \equiv 4 \mod 5$ and $k \equiv -2 \mod 8$, we can guess k = 14 or follow the strategy from the Chinese remainder theorem: find a, b such that $8a \equiv 1 \mod 5$ and $5b \equiv 1 \mod 8$. We can take a = 2 and b = 5. Then $k = 4 \cdot 8 \cdot a + (-2) \cdot 5 \cdot b = 64 - 50 = 14$ is a solution. Then $x = 7 \cdot 14 = 98$ is a solution, and all solutions are given by 98 + 280m, m integer. (Many other solutions are possible.) (b) $13x \equiv 2 \mod 15$ implies $13x \equiv 3x \equiv 2 \mod 5$; $16x \equiv 3 \mod 25$ implies $16x \equiv x \equiv 3 \mod 5$. But if $x \equiv 3 \mod 5$, then $3x \equiv 9 \equiv 4 \mod 5$, which contradicts $3x \equiv 2 \mod 5$, so there are no solutions.

Similarly, in (c) $x \equiv 0 \mod 18$ implies 3|x which contradicts $2x \equiv -2 \mod 30$. No solutions either.

Problem 2. Prove that $7|(3^{2n+1} + 2^{n+2})$ for all *n*. **Solution.** $3^{2n+1} + 2^{n+2} = 3 \cdot (3^2)^n + 4 \cdot 2^n \equiv 3 \cdot 2^n + 4 \cdot 2^n \equiv 7 \cdot 2^n \equiv 0 \mod 7$.

Problem 3. For what n is $\phi(n)$ odd?

Solution. Only for n = 2. Indeed, if $n = p_1^{\alpha_1} p_2^{\alpha_2} \dots p_k^{\alpha_k}$, then $\phi(n) = (p_1^{\alpha_1} - p_1^{\alpha_1 - 1})(p_2^{\alpha_2} - p_1^{\alpha_2 - 1}) \dots (p_k^{\alpha_k} - p_k^{\alpha_k - 1})$. If at least one of p_i is odd, then both $p_i^{\alpha_i}$ and $p_i^{\alpha_i - 1}$ are odd, so $p_i^{\alpha_i} - p_i^{\alpha_i - 1}$ is even and $\phi(n)$ is even. If $n = 2^m$, $\phi(n)$ is also even unless m = 1.

Problem 4. Prove that

 $(p-1)! \equiv p-1 \mod (1+2+3+\dots+(p-1))$ if p is prime.

Solution. Assume p > 2, as the case p = 2 is trivial. We have $1+2+3+\dots+(p-1) = p\frac{p-1}{2}$. (The sum of all integers from 1 to n is $\frac{n(n+1)}{2}$. You can prove this by induction or by adding numbers in pairs, 1+n, 2+(n-1), etc.) Note that since p > 2 is prime, $\frac{p-1}{2}$ is an integer. Besides, p and $\frac{p-1}{2}$ are relatively prime. Then the congruence p-1! $\equiv p-1 \mod p\frac{p-1}{2}$ is equivalent to the system of two congruences, $(p-1)! \equiv p-1 \mod p$ and $(p-1)! \equiv p-1 \mod p$; the second, $(p-1)! \equiv p-1 \equiv 0 \mod \frac{p-1}{2}$, holds because p-1 divides (p-1)!

Problem 5. (a) Find the last digit of 2^{1000} and the last digit of 3^{1000} .

Solution. For this, it suffices to look at last digits of $2^1 = 2$, $2^2 = 4$, $2^3 = 8$, $2^4 = 16$, $2^5 = 32$, $2^6 = 64$... and notice that the last digit will repeat cyclically in the pattern 2, 4, 8, 6, 2, 4, 8, 6.... Because 4|1000, the last digit of 2^{1000} will be 6. Similarly, for powers of 3 we have $3^1 = 3$, $3^2 = 9$, $3^3 = 27$, $3^4 = 81$, $3^5 = ..3$, so the cyclical pattern is 3, 9, 7, 1, 3, 9, 7, 1, 3..., and the last digit of 3^{1000} is 1.

(b) Find the last two digits of 3^{1000} .

Solution. The last two digits are given by $3^{1000} \mod 100$. Since 3 and 100 are relatively prime, Euler's theorem applies, so $3^{\phi(100)} \equiv 1 \mod 100$. Compute $\phi(100) = \phi(2^2)\phi(5^2) = (4-2)(25-5) = 40$. So $3^{40} \equiv 1 \mod 100$, and then $3^{1000} \equiv (3^{40})^{25} \equiv 1^{25} \equiv 1 \mod 100$, so the last two digits are 01.

(c) Find the last two digits of 2^{1000} .

Solution. Since 2 and 100 are not relatively prime, Euler's theorem with $\phi(100)$ won't apply. However, we can argue that $2^{\phi(25)} = 2^{20} \equiv 1 \mod 25$, so $2^{1000} \equiv (2^{20})^{5}0 \equiv 1 \mod 25$. This gives 4 possibilities for the last 2 digits: 01, 26, 51, 76. Since we also know that $4|2^{1000}$, the last two digits must be 76.