MAT 311 Introduction to Number Theory

Problem Set 4

due Wednesday, February $25\,$

Please prove all your answers.

Problem 1. Solve the following systems of congruences.

(a) $x \equiv 3 \mod 5$	(b) $13x \equiv 2 \mod 15$	(c) $x \equiv 0 \mod 18$
$x \equiv 2 \mod 8$	$16x \equiv 3 \mod 25$	$3x \equiv 12 \mod 20$
$x \equiv 0 \mod 7$		$2x \equiv -2 \mod 30$

Problem 2. Prove that $7|(3^{2n+1}+2^{n+2})$ for all *n*.

Problem 3. For what n is $\phi(n)$ odd?

Problem 4. Prove that

 $(p-1)! \equiv p-1 \mod (1+2+3+\dots+(p-1))$ if p is prime.

Hint: simplify $1 + 2 + 3 + \cdots + (p - 1)$ first. Then think of some familiar congruence involving (p - 1)!.

Problem 5. (a) Find the last digit of 2^{1000} and the last digit of 3^{1000} .

(b) Find the last two digits of 3^{1000} . **Hint:** use a theorem about $a^n \equiv ?$ mod something. (c) Find the last two digits of 2^{1000} . **Hint:** the theorem you used in (b) no longer applies directly, but you can work around this by factoring $100 = 4 \cdot 25$ and dealing with mod 4 and mod 25 separately.