MAT 311, Homework 2 due 9/13

1. (a) Show that there are no prime triplets, that is, primes $p, p+2, p+4$, other than 3,5 , and 7 .
(b) Find all prime p such that $p^{2}+2$ is also prime.
2. (a) Suppose that $2^{n}-1$ is a prime number. Show that n must be also prime.
(b) Prove that $n^{4}+n^{2}+1$ is composite for all natural $n>1$. Hint: $a^{2}+a+1=(a+1)^{2}-a$.
(c) Find the prime decomposition of $2^{36}-1$. Don't use a calculator or an answer from the internet, and don't compute the decimal representation of $2^{36}-1$. Use algebra instead; parts (a) and (b) should be useful, among other things.
3. Prove the following criterion for divisibility by 11 :

A natural number is congruent modulo 11 to the alternating sum of its digits (in decimal notation).
"Alternating" means taken with alternating signs, + for the units, for tens, + for hundreds, etc. (Example: $123456 \equiv-1+2-3+4-5+6 \bmod 11$.)
4. (a) Prove that a square of an integer cannot end by two odd digits (in decimal notation).
(b) For n integer, prove that if the last digit of n^{2} is 5 , then n^{2} ends by 25 (in decimal notation).
(c) Let $m=101010 \ldots . \ldots 10101$ be the number that consists of 2024 1's alternating with 20230 's (in decimal notation. Show that m is not square of any integer.
(d) Suppose the integer a in decimal notation consists of 300 1's together with some number of zeros. Show that a is not a square of any integer.
5. (a) Find the remainder of $\left(116+17^{17}\right)^{21} \cdot 7^{49}$ when divided by 8 .
(b) Show that $6^{2 n+1}+1$ is divisible by 7 for all $n \geq 1$.
(c) Show that $2^{n}-3$ divides $\left(2^{n}-1\right)^{n}-3$ for every $n \geq 1$.

Please use congruences, do not use induction in (b) and (c)!
6. Suppose that $u=a m+b n, v=c m+d n$, and $a d-b c=1$ for some integers a, b, c, d, m, n, u, v. Prove that $(m, n)=(u, v)$.

