
Applications of congruences and divisibility: elementary number theory questions

This is a summary and a few examples that we did in class on 9/6.

1. Computing remainders. Use properties of congruences to compute remainders easily.
Example 1.1. Show that 7 divides 32n+1 + 2n+2 for every n ≥ 1.

Solution.

32n+1 + 2n+2 = 3 · 9n + 4 · 2n ≡ 3 · 2n + 4 · 2n ≡ 7 · 2n ≡ 0 mod 7.

We used properties of congruences: 9 ≡ 2 mod 7 so 9n ≡ 2n ≡ 7.

Example 1.2. Find the last digit of 32023.

Solution. The last digit of a positive integer n is congruent to n mod 10. To find the remainder of 32023

mod 10, notice that 9 ≡ −1 mod 10. In these questions, −1 is always your friend. Then

32023 = 3 · 91011 ≡ 3 · (−1)1011 ≡ −3 ≡ 7.

The last digit is 7.

2. Divisibility criteria. Let a positive integer A be written in decimal notation as

A = anan−1 . . . a2a1a0.

This notation means that A has n digits, an, . . . , a1, a0, so that

A = 10n · an + 10n−1 · an−1 + . . . 102 · a2 + 10 · a1 + a0.

Divisibility by 2 and 5. Obviously, A ≡ a0 mod 2 and mod 5, since 2 and 5 divide 10. This means
that in these cases, divisibility and remainder is determined by the last digit.

Divisibility by 4. Since 4 divides 100, we see that A ≡ 10a1 + a0 mod 4. Thus, divisibility by 4 and the
remainder are determined by the 2-digit integer formed by the last two digits of A.

Divisibility by 3 and 9. Using the fact that 10 ≡ 1 mod 9 and therefore 10n ≡ 1 mod 9, we get that

A ≡ an + an−1 + · · ·+ a2 + a1 + a0 mod 9,

that is, the positive integer A is congruent mod 9 to the sum of its digits. The same is true mod 3, since
3 divides 9.

3. Perfect squares. One could wonder whether a given integer a can be a square of another integer, so
that a = n2 for some n. If this is the case, a is called a perfect square. Perfect squares have some special
properties.

Prime divisors of perfect squares. If a = n2 is divisible by a prime p, then it must be divisible by p2.
This follows from the prime factorization (and its uniqueness!): for a to be divisible by p, n must have a
factor of p in its prime factorization, and then a must have p2.

Remainders of perfect squares. There are some useful congruences for perfect squares:

Remainders of a = n2 mod 3 and mod 4 can only be 0 and 1.

This is easily checked by considering cases: n ≡ 0 mod 3, n ≡ 1 mod 3, n ≡ 2 mod 3 and squaring these
congruences (and similarly checking remainders 0, 1, 2, 3 mod 4).

Example 3.1. Consider the integer A = 111 . . . 11 consisting of 100 1’s in decimal notation. Is A a perfect
square?

Solution. By divisibility criteria, A ≡ 11 ≡ 3 mod 4, but this is not possible for a perfect square. (Note
that arguing mod 3 would give no conclusion since A ≡ 100 ≡ 1 mod 3.)
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4. Prime and composite numbers. Proving that a given integer is prime is hard (unless you can directly
check that it has no non-trivial divisors); to prove that a number is composite, it suffices to find a non-trivial
divisor or factorization. You can use the arithmetic of congruences or divisibility criteria to find divisors:
for example, 32n+1 + 2n+2 is divisible by 7 for every n ≥ 1 by Example 1.1, and since it is greater than 7,
it cannot be prime. Another method is to use algebra to find a factorization. Formulas for differences of
squares and cubes and sums of cubes are useful. The following two formulas generalize them:

an − bn = (a− b)(an−1 + an−2b+ an−3b2 + · · ·+ abn−2 + bn−1), n ≥ 1,

an + bn = (a+ b)(an−1 − an−2b+ an−3b2 ± · · · − abn−2 + bn−1), n ≥ 1, n odd.

Both formulas can be easily proved by multiplying out: most terms will cancel.

Example 4.1. Prove that 2n + 1 cannot be prime unless n is a power of 2.

Solution. If n is not a power of 2, the prime decomposition tells us that n must have an odd divisor m > 1,
so that n = m · k for some integer k. (We might have n = m, k = 1, but we always get k < n since m > 1.)
Then we have

2n + 1 = (2k)m + 1 = (2k + 1)((2k)m−1 − (2k)m−2 ± · · ·+ 1)

by the formula for the sum of mth powers, m odd. We need to check that the factorization is nontrivial: we
have 2k + 1 ≥ 3 > 1 and 2k + 1 < 2n + 1. So the factorization shows that 2n + 1 is composite.


