Applications of congruences and divisibility: elementary number theory questions

$$
\text { This is a summary and a few examples that we did in class on } 9 / 6 \text {. }
$$

1. Computing remainders. Use properties of congruences to compute remainders easily.

Example 1.1. Show that 7 divides $3^{2 n+1}+2^{n+2}$ for every $n \geq 1$.
Solution.

$$
3^{2 n+1}+2^{n+2}=3 \cdot 9^{n}+4 \cdot 2^{n} \equiv 3 \cdot 2^{n}+4 \cdot 2^{n} \equiv 7 \cdot 2^{n} \equiv 0 \quad \bmod 7
$$

We used properties of congruences: $9 \equiv 2 \bmod 7$ so $9^{n} \equiv 2^{n} \equiv 7$.
Example 1.2. Find the last digit of 3^{2023}.
Solution. The last digit of a positive integer n is congruent to $n \bmod 10$. To find the remainder of 3^{2023} $\bmod 10$, notice that $9 \equiv-1 \bmod 10$. In these questions, -1 is always your friend. Then

$$
3^{2023}=3 \cdot 9^{1011} \equiv 3 \cdot(-1)^{1011} \equiv-3 \equiv 7
$$

The last digit is 7 .
2. Divisibility criteria. Let a positive integer A be written in decimal notation as

$$
A=\overline{a_{n}} a_{n-1} \ldots a_{2} a_{1} a_{0} .
$$

This notation means that A has n digits, $a_{n}, \ldots, a_{1}, a_{0}$, so that

$$
A=10^{n} \cdot a_{n}+10^{n-1} \cdot a_{n-1}+\ldots 10^{2} \cdot a_{2}+10 \cdot a_{1}+a_{0}
$$

Divisibility by 2 and 5. Obviously, $A \equiv a_{0} \bmod 2$ and $\bmod 5$, since 2 and 5 divide 10 . This means that in these cases, divisibility and remainder is determined by the last digit.

Divisibility by 4. Since 4 divides 100 , we see that $A \equiv 10 a_{1}+a_{0} \bmod 4$. Thus, divisibility by 4 and the remainder are determined by the 2-digit integer formed by the last two digits of A.

Divisibility by 3 and 9 . Using the fact that $10 \equiv 1 \bmod 9$ and therefore $10^{n} \equiv 1 \bmod 9$, we get that

$$
A \equiv a_{n}+a_{n-1}+\cdots+a_{2}+a_{1}+a_{0} \quad \bmod 9
$$

that is, the positive integer A is congruent $\bmod 9$ to the sum of its digits. The same is true mod 3 , since 3 divides 9 .
3. Perfect squares. One could wonder whether a given integer a can be a square of another integer, so that $a=n^{2}$ for some n. If this is the case, a is called a perfect square. Perfect squares have some special properties.

Prime divisors of perfect squares. If $a=n^{2}$ is divisible by a prime p, then it must be divisible by p^{2}. This follows from the prime factorization (and its uniqueness!): for a to be divisible by p, n must have a factor of p in its prime factorization, and then a must have p^{2}.

Remainders of perfect squares. There are some useful congruences for perfect squares:
Remainders of $a=n^{2} \bmod 3$ and $\bmod 4$ can only be 0 and 1 .
This is easily checked by considering cases: $n \equiv 0 \bmod 3, n \equiv 1 \bmod 3, n \equiv 2 \bmod 3$ and squaring these congruences (and similarly checking remainders $0,1,2,3 \bmod 4$).

Example 3.1. Consider the integer $A=111 \ldots 11$ consisting of 1001 's in decimal notation. Is A a perfect square?

Solution. By divisibility criteria, $A \equiv 11 \equiv 3 \bmod 4$, but this is not possible for a perfect square. (Note that arguing $\bmod 3$ would give no conclusion since $A \equiv 100 \equiv 1 \bmod 3$.)
4. Prime and composite numbers. Proving that a given integer is prime is hard (unless you can directly check that it has no non-trivial divisors); to prove that a number is composite, it suffices to find a non-trivial divisor or factorization. You can use the arithmetic of congruences or divisibility criteria to find divisors: for example, $3^{2 n+1}+2^{n+2}$ is divisible by 7 for every $n \geq 1$ by Example 1.1, and since it is greater than 7 , it cannot be prime. Another method is to use algebra to find a factorization. Formulas for differences of squares and cubes and sums of cubes are useful. The following two formulas generalize them:

$$
\begin{array}{ll}
a^{n}-b^{n}=(a-b)\left(a^{n-1}+a^{n-2} b+a^{n-3} b^{2}+\cdots+a b^{n-2}+b^{n-1}\right), & n \geq 1 \\
a^{n}+b^{n}=(a+b)\left(a^{n-1}-a^{n-2} b+a^{n-3} b^{2} \pm \cdots-a b^{n-2}+b^{n-1}\right), & n \geq 1, \quad n \text { odd. }
\end{array}
$$

Both formulas can be easily proved by multiplying out: most terms will cancel.
Example 4.1. Prove that $2^{n}+1$ cannot be prime unless n is a power of 2 .
Solution. If n is not a power of 2 , the prime decomposition tells us that n must have an odd divisor $m>1$, so that $n=m \cdot k$ for some integer k. (We might have $n=m, k=1$, but we always get $k<n$ since $m>1$.) Then we have

$$
2^{n}+1=\left(2^{k}\right)^{m}+1=\left(2^{k}+1\right)\left(\left(2^{k}\right)^{m-1}-\left(2^{k}\right)^{m-2} \pm \cdots+1\right)
$$

by the formula for the sum of m th powers, m odd. We need to check that the factorization is nontrivial: we have $2^{k}+1 \geq 3>1$ and $2^{k}+1<2^{n}+1$. So the factorization shows that $2^{n}+1$ is composite.

