Theorem. There are are infinitely primes of the form $4 n+3$.
Proof. We try to adapt the proof of the fact that there's infinitely many prime numbers. Suppose there's only finitely primes of the form $4 n+3$, and let $p_{1}, p_{2}, \ldots p_{k}$ be all such primes. Consider the number

$$
m=4 p_{1} p_{2} \ldots p_{k}-1
$$

Note that m has the form $4 s+3$, and that none of the primes $p_{1}, p_{2}, \ldots p_{k}$ divide m. (Why?) If the number m is prime itself, then we get a contradiction by finding a prime number different from $p_{1}, p_{2}, \ldots p_{k}$. If m is not prime, then it must have some prime factors. In general, 2 is the only even prime, so all prime numbers have the form $4 n+1$ or $4 n+3$. By construction, m can have no prime factors of the form $4 n+3$, because we are assuming that all of those are given by $p_{1}, p_{2}, \ldots, p_{k}$. Since m is odd, all its prime factors must then have the form $4 n+1$. But any product of factors of this form must itself have the form $4 n+1$ (why?), which is contradiction because m doesn't have this form.

