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Let X be a smooth closed simply-connected 4-manifold.

Seiberg-Witten(X) ∈ Z[H2(X)].

Reminds the Alexander polynomial of a link L ⊂ S3 :

∆(K) ∈ Z[H1(S3 ∖L)] .

There is a well-known precise connection, Fintushel-Stern Theorem:

If T ⊂X is a smooth torus with T ○ T = 0 , then replacement of

tubular nbhd(T ) = T ×D2 with exterior(K) × S1 multiplies the

SW (X) by ∆(K) .

Looks like ∆(K) is morally SW ((S3 ∖K) × S1) .

Is SW (X) the Alexander polynomial of something?

∆(K) is the order of Z[H1(S3 ∖K)]-module H1(S̃3 ∖K) .

S̃3 ∖K → S3 ∖K is an infinite cyclic covering.



Looking for a space

Table of Contents p. 13 – 4 / 15

∆(K) ∈ Z[H1(S3 ∖L)]



Looking for a space

Table of Contents p. 14 – 4 / 15

∆(K) ∈ Z[H1(S3 ∖L)]
H1(??) =H2(X) ?



Looking for a space

Table of Contents p. 15 – 4 / 15

∆(K) ∈ Z[H1(S3 ∖L)]
H1(??) =H2(X) ?

?? = ΩX ?



Looking for a space

Table of Contents p. 16 – 4 / 15

∆(K) ∈ Z[H1(S3 ∖L)]
H1(??) =H2(X) ?

?? = ΩX ?

Indeed, πi(ΩX) = πi+1(X) , π1(ΩX) = π2(X) =H2(X) ,

π2(ΩX) = π3(X)



Looking for a space

Table of Contents p. 17 – 4 / 15

∆(K) ∈ Z[H1(S3 ∖L)]
H1(??) =H2(X) ?

?? = ΩX ?

Indeed, πi(ΩX) = πi+1(X) , π1(ΩX) = π2(X) =H2(X) ,

π2(ΩX) = π3(X)
Quadratic forms on H2(X) modulo the intersection form of X .



Looking for a space

Table of Contents p. 18 – 4 / 15

∆(K) ∈ Z[H1(S3 ∖L)]
H1(??) =H2(X) ?

?? = ΩX ?

Indeed, πi(ΩX) = πi+1(X) , π1(ΩX) = π2(X) =H2(X) ,

π2(ΩX) = π3(X)
Quadratic forms on H2(X) modulo the intersection form of X .

Bad idea, because

● ΩX does not depend on smooth structure of X ;



Looking for a space

Table of Contents p. 19 – 4 / 15

∆(K) ∈ Z[H1(S3 ∖L)]
H1(??) =H2(X) ?

?? = ΩX ?

Indeed, πi(ΩX) = πi+1(X) , π1(ΩX) = π2(X) =H2(X) ,

π2(ΩX) = π3(X)
Quadratic forms on H2(X) modulo the intersection form of X .

Bad idea, because

● ΩX does not depend on smooth structure of X ;

● ΩX is an H-space, therefore π1(ΩX) acts on H∗(ΩX) trivially.



Looking for a space

Table of Contents p. 20 – 4 / 15

∆(K) ∈ Z[H1(S3 ∖L)]
H1(??) =H2(X) ?

?? = ΩX ?

Indeed, πi(ΩX) = πi+1(X) , π1(ΩX) = π2(X) =H2(X) ,

π2(ΩX) = π3(X)
Quadratic forms on H2(X) modulo the intersection form of X .

Bad idea, because

● ΩX does not depend on smooth structure of X ;

● ΩX is an H-space, therefore π1(ΩX) acts on H∗(ΩX) trivially.

Improve ΩX ?



Looking for a space

Table of Contents p. 21 – 4 / 15

∆(K) ∈ Z[H1(S3 ∖L)]
H1(??) =H2(X) ?

?? = ΩX ?

Indeed, πi(ΩX) = πi+1(X) , π1(ΩX) = π2(X) =H2(X) ,

π2(ΩX) = π3(X)
Quadratic forms on H2(X) modulo the intersection form of X .

Bad idea, because

● ΩX does not depend on smooth structure of X ;

● ΩX is an H-space, therefore π1(ΩX) acts on H∗(ΩX) trivially.

Improve ΩX ?

Let KX ⊂ ΩX be the space of loops smoothly embedded in X

and having at the base point a fixed direction.



Looking for a space

Table of Contents p. 22 – 4 / 15

∆(K) ∈ Z[H1(S3 ∖L)]
H1(??) =H2(X) ?

?? = ΩX ?

Indeed, πi(ΩX) = πi+1(X) , π1(ΩX) = π2(X) =H2(X) ,

π2(ΩX) = π3(X)
Quadratic forms on H2(X) modulo the intersection form of X .

Bad idea, because

● ΩX does not depend on smooth structure of X ;

● ΩX is an H-space, therefore π1(ΩX) acts on H∗(ΩX) trivially.

Improve ΩX ?

Let KX ⊂ ΩX be the space of loops smoothly embedded in X

and having at the base point a fixed direction.

codimΩX KX = 2 , hence in∗ ∶ π1(KX)→ π1(ΩX) is onto.
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Obvious suggestion: consider the covering K̃X →KX

induced by the universal covering Ω̃X → ΩX ,

H∗(K̃X) is a module over Z[H1(ΩX)] = Z[H2(X)] .

Consider the order of Hi(K̃X) .

How to calculate Hi(K̃X) ?

Apply Vassiliev’s idea: calculate first H∗(Ω̃X ∖ K̃X) .

Resolve singularities of the discriminant DΩX = ΩX ∖KX

as Vassiliev did.

This gives rise to a filtration in H∗(D̃ΩX) .

What are points of Ω̃X ?

A loop in X with the homotopy class of a spanning disk.
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Recall that a TQFT is a functor

from a category of cobordisms to a category of algebraic nature.

Cobordisms are understood in a wide sense.

Example. Quantum invariants of tangles.

The role of state sums. Quantum Topology = State Sum Topology?

Late eighties: State sum fashion.

Versatility of state sums:

Links ↦ Embedded graphs ↦ 3-manifolds.

Easy cooperation with topological constructions.

Naive imitation: Turaev-Viro invariants.

Quantum 6j-symbols. Turaev’s shadows.
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What topological constructions were not used together with TQFT?

● State sum give rise to invariants of 4-manifolds,

but most of these invariants are too good.

Find bad state sums that are not.

Those which are trivial for S2 × S2 would be especially interesting.

● Turaev-Viro TQFT can be understood as

skein modules of colored graphs on surfaces.

Can this be used to extend to new kinds of state sums?

● Seifert-Turaev construction with a TQFT gives rise to

a bigraded module over Z[Z] associated to a knot.

Is this a functor?



Playing Categorification

Playing topology

Playing Quantum

Topology

Playing Categorification

● Categorify state sums

● 2-links

Real problem

Table of Contents p. 54 – 9 / 15



Categorify state sums

Table of Contents p. 55 – 10 / 15

Now categorification is in vogue.



Categorify state sums

Table of Contents p. 56 – 10 / 15

Now categorification is in vogue. First naive, now more technical.



Categorify state sums

Table of Contents p. 57 – 10 / 15

Now categorification is in vogue. First naive, now more technical.

Does it worth efforts to make it naive?



Categorify state sums

Table of Contents p. 58 – 10 / 15

Now categorification is in vogue. First naive, now more technical.

Does it worth efforts to make it naive?

Play a naive fresh game:

Find state homology of simple 2-polyhedra or shadowed 2-polyhedra



Categorify state sums

Table of Contents p. 59 – 10 / 15

Now categorification is in vogue. First naive, now more technical.

Does it worth efforts to make it naive?

Play a naive fresh game:

Find state homology of simple 2-polyhedra or shadowed 2-polyhedra

invariant under the moves, and functorial.



Categorify state sums

Table of Contents p. 60 – 10 / 15

Now categorification is in vogue. First naive, now more technical.

Does it worth efforts to make it naive?

Play a naive fresh game:

Find state homology of simple 2-polyhedra or shadowed 2-polyhedra

invariant under the moves, and functorial.

How should it look like?



Categorify state sums

Table of Contents p. 61 – 10 / 15

Now categorification is in vogue. First naive, now more technical.

Does it worth efforts to make it naive?

Play a naive fresh game:

Find state homology of simple 2-polyhedra or shadowed 2-polyhedra

invariant under the moves, and functorial.

How should it look like?

Like the usual homology, but subject new requirements.



Categorify state sums

Table of Contents p. 62 – 10 / 15

Now categorification is in vogue. First naive, now more technical.

Does it worth efforts to make it naive?

Play a naive fresh game:

Find state homology of simple 2-polyhedra or shadowed 2-polyhedra

invariant under the moves, and functorial.

How should it look like?

Like the usual homology, but subject new requirements.

States are like chains: additional structures (colorings).



Categorify state sums

Table of Contents p. 63 – 10 / 15

Now categorification is in vogue. First naive, now more technical.

Does it worth efforts to make it naive?

Play a naive fresh game:

Find state homology of simple 2-polyhedra or shadowed 2-polyhedra

invariant under the moves, and functorial.

How should it look like?

Like the usual homology, but subject new requirements.

States are like chains: additional structures (colorings).

Grading.



Categorify state sums

Table of Contents p. 64 – 10 / 15

Now categorification is in vogue. First naive, now more technical.

Does it worth efforts to make it naive?

Play a naive fresh game:

Find state homology of simple 2-polyhedra or shadowed 2-polyhedra

invariant under the moves, and functorial.

How should it look like?

Like the usual homology, but subject new requirements.

States are like chains: additional structures (colorings).

Grading. Differentials, defined locally.



Categorify state sums

Table of Contents p. 65 – 10 / 15

Now categorification is in vogue. First naive, now more technical.

Does it worth efforts to make it naive?

Play a naive fresh game:

Find state homology of simple 2-polyhedra or shadowed 2-polyhedra

invariant under the moves, and functorial.

How should it look like?

Like the usual homology, but subject new requirements.

States are like chains: additional structures (colorings).

Grading. Differentials, defined locally.

Usual homology and their extensions.
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What is a 2-dimensional link in the 4-space?

Embedded disjoint 2-spheres?
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What is a 2-dimensional link in the 4-space?

Embedded disjoint 2-spheres?

Embedded disjoint closed oriented surfaces?

Embedded disjoint closed surfaces?

Embedded transversal to each other closed surfaces?

A closed surface generically immersed to the 4-space?

Example. Zeeman’s twist spun knot with the axis of the spinning.

Zeeman’s 1-twist spun knot is unknotted, but the link is not,

unless the initial knot was trivial.

Khovanov homology and other link homology

give rise to invariants of the links with self-intersections.

This requires extension of the Khovanov homology

to cobordisms with transverse self-intersections.



Real problem

Playing topology

Playing Quantum

Topology

Playing Categorification

Real problem

● The real problem

● Table of Contents

Table of Contents p. 76 – 12 / 15



The real problem

Table of Contents p. 77 – 13 / 15

How can we make American teachers familiar with

the mathematics that they are supposed to teach?
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